Министерство науки и высшего образования Российской Федерации Лысьвенский филиал

федерального государственного автономного образовательного учреждения высшего образования

«Пермский национальный исследовательский политехнический университет»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине «Физическая химия»

Приложение к рабочей программе дисциплины

Направление подготовки: 22.03.02 Металлургия

Направленность (профиль) Обработка металлов и сплавов давлением

образовательной программы:

Квалификация выпускника: «Бакалавр»

Выпускающая кафедра: Технических дисциплин

Форма обучения: Очная/ очно-заочная/ заочная

Курс: 3 **Семестр**: 5

Трудоёмкость:

Кредитов по рабочему учебному плану: 4 3E Часов по рабочему учебному плану: 144 ч.

Форма промежуточной аттестации:

Экзамен: 5 семестр

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине является частью (приложением) к рабочей программе дисциплины. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине разработан в соответствии с общей частью фонда оценочных средств для проведения промежуточной аттестации образовательной программы, которая устанавливает систему оценивания результатов промежуточной аттестации и критерии выставления оценок. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы и процедуры текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине.

1. Перечень контролируемых результатов обучения по дисциплине, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины запланировано в течение одного семестра (5-го семестра учебного плана). В семестре предусмотрены аудиторные лекционные и практические занятия, а также самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируется компоненты компетенций знать, уметь, владеть, указанные в РПД, которые выступают в качестве контролируемых результатов обучения по дисциплине (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала, сдаче отчетов по практическим занятиям и экзамена. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

		Вид контроля				
Контролируемые результаты обучения по	Текущий		Рубежный		Итоговый	
дисциплине (ЗУВы)		ТО	ОПЗ	Т/КР	Экзамен	
Усвоенные знания						
3.1 знать основы физической химии и		TO1		T 1-2	TB	
физико-химических методов анализа.				KP 1-2		
Освоенные умения						
У.1 уметь решать стандартные			ОПЗ	T 1-2	ПЗ	
профессиональные задачи с применением			1-10	KP 1-2		
естественнонаучных и общеинженерных						
знаний.						
Приобретенные владения						
В.1 владеть навыками теоретического и			ОПЗ		КЗ	
экспериментального исследования объектов			1-10			
профессиональной деятельности.						

TO- теоретический опрос; $O\Pi 3-$ отчёт по практическому занятию; T/KP-тестирование (контрольная работа); TB- теоретический вопрос; $\Pi 3-$ практическое задание, K3-комплексное задание экзамена.

Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в форме экзамена в 5 семестре, проводимая с учетом результатов текущего и рубежного контроля.

2. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной эффективности учебного процесса, управление процессом формирования обучаемых, заданных компетенций повышение мотивации учебе предусматривает оценивание хода освоения дисциплины. В соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования программам бакалавриата, специалитета И магистратуры ПНИПУ предусмотрены следующие виды периодичность И текущего контроля успеваемости обучающихся:

- входной контроль, проверка исходного уровня подготовленности обучаемого и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента «знать» заданных компетенций) на каждом групповом занятии и контроль посещаемости лекционных занятий;
- промежуточный и рубежный контроль освоения обучаемыми отдельных компонентов «знать», «уметь» заданных компетенций путем компьютерного или бланочного тестирования, контрольных опросов, контрольных работ (индивидуальных домашних заданий), защиты отчетов по лабораторным работам, рефератов, эссе и т.д.

Рубежный контроль по дисциплине проводится на следующей неделе после прохождения модуля дисциплины, а промежуточный — во время каждого контрольного мероприятия внутри модулей дисциплины;

- межсессионная аттестация, единовременное подведение итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы;
 - контроль остаточных знаний.

2.1. Текущий контроль усвоения материала

Текущий контроль усвоения материала в форме собеседования или выборочного теоретического опроса студентов проводится по каждой теме. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений (табл. 1.1) проводится в форме защиты отчетов по практическим занятиям и рубежных контрольных работ.

2.2.1. Защита отчетов по практическим занятиям

Всего запланировано 10 практических занятий. Типовые темы практических занятий приведены в РПД.

Защита отчётов по практическим занятиям проводится индивидуально каждым студентом. Типовые шкала и критерии оценки приведены в общей части ФОС бакалаврской программы.

2.2.2. Рубежная контрольная работа

Согласно РПД запланировано 2 рубежные контрольные работы (КР) после освоения студентами учебных модулей дисциплины. Первая КР по темам 1-4, вторая КР – по темам 5,6.

Типовые задания первой КР:

1. Рассчитайте возможность протекания реакции $2Fe + O_2 = 2FeO$ в прямом направлении при стандартных условиях и при температуре 900 °C.

$$\Delta H_{298}^{0}(\text{Fe}O) = -263,68 \kappa \mbox{Дж/моль}$$
 $\Delta S_{298}^{0}(\text{Fe}) = 27,15 \mbox{Дж/моль}$ $\Delta S_{298}^{0}(\text{Fe}O) = 58,79 \mbox{Дж/моль}$ $\Delta S_{298}^{0}(O_{2}) = 205,03 \mbox{Дж/моль}$

2. Определить теплоту, поглощённую при нагревании 100 г. двуокиси углерода от 15 до 1000 °C при постоянном объёме, если изохорная теплоемкость выражается уравнением:

$$c_{\nu}^{CO_2} = 27,24 + 0,00809t$$
 Дж/моль·град.

- 3. По уравнению изотермы химической реакции определите значение энергии Гиббса химической реакции, протекающей в газовой фазе между оксидом углерода (II) и водяным паром при температуре 300 K, константа скорости реакции $K_p = 1,5$
- 4. Определите число фаз, число компонентов и число степеней свободы для равновесной системы, содержащей $CuSO_4 \cdot 5H_2O_{(\kappa)}$, $CuSO_{4(\kappa)}$, $H_2O_{(\Gamma)}$
- 5. Вычислить осмотическое давление 2%-ного раствора глюкозы при 0 °C. Плотность раствора принять равной единице.
- 6. Вычислите температуру кипения 15% водного раствора пропилового спирта, эбуллиоскопическая константа воды 0,52 °C.

Типовые задания второй КР:

1. Для некоторой реакции при повышении температуры константа скорости изменяется следующим образом

T, K	645	714
k, моль ⁻¹ ·дм ³ ·с ⁻¹	$5,41\cdot10^{-3}$	0,11

Рассчитайте энергию активации этой реакции.

- 2. Для некоторой реакции первого порядка период полупревращения составляет 2 года. Сколько потребуется времени, чтобы концентрация исходного вещества уменьшилась в 10 раз?
- 3. Определить суммарную поверхность частиц, если при дроблении 1 г. серы получили частицы кубической формы с длиной ребра, равной 10^{-5} см. Плотность серы $2,07~\mathrm{r/cm}^3$.

4. Используя уравнение Ленгмюра, вычислить адсорбцию азота на цеолите при давлении равном 2.8×10^3 Па, если величина предельной адсорбции 0.039 кг/кг. K = 0.015. Рассчитать площадь, занимаемую одной молекулой.

2.2.2. Рубежное тестирование

Согласно РПД запланировано 3 промежуточных тестирования после освоения студентами тем дисциплины. Первое T по темам 1-2 «Химическая термодинамика и равновесие», второе T — по темам 3-4 «Фазовые равновесия и термодинамическая теория растворов», третье T — по темам 5-6 «Кинетика химических реакций», «Термодинамика поверхностных явлений».

Типовые вопросы первого тестирования:

- 1. Выражение первого начала термодинамики, записанное с использованием работы системы W и теплоты процесса Q, имеет вид:
 - 1) $Q = \Delta U W$
 - $Q = \Delta U + W$
 - 3) $\Delta U = Q + W$
 - 4) $\Delta U = Q W$
 - 5) $W = \Delta U + Q$
 - 2. Термохимическое уравнение Кирхгофа выражает зависимость:
 - 1) энтальпии вещества от температуры при постоянном давлении;
 - 2) теплоемкости вещества от температуры при постоянном давлении;
 - 3) энтальпии вещества от давления при постоянной температуре;
 - 4) теплоемкости вещества от давления при постоянной температуре;
 - 5) изменения энтальпии в процессе от температуры при постоянном давлении;
 - 6) изменения энтальпии в процессе от давления при постоянной температуры
 - 3. Математическое выражение второго начала термодинамики:
 - 1) $\Delta S = Q/T$
 - 2) $\Delta S = \Delta H/T$
 - 3) $dS = \delta Q/T$
 - 4) $dS \ge \delta Q/T$
 - 5) TdS=dU + PdV
 - 6) TdS = dH VdP
- 4. Направление самопроизвольного протекания процесса при изохорно-изотермических условиях характеризует:
 - 1) Энергия Гиббса;
 - 2) Энергия Гельмгольца;
 - 3) Энтропия;
 - 4) Энтальпия
- 5. Для химической реакции в газовой фазе $C_2H_4(z) + H_2O(z) = C_2H_5OH(z)$, стандартное изменение энтальпии отрицательно, составляет 47 кДж/моль. Для увеличения выхода продукта реакции необходимо:
 - 1) увеличить температуру и давление;
 - 2) увеличить температуру, уменьшить давление;
 - 3) уменьшить температуру, увеличить давление;
 - 4) уменьшить температуру и давление;
 - 5) увеличить только температуру, давление не влияет на равновесный выход;

- 6) уменьшить только температуру, давление не влияет на равновесный выход;
- 7) увеличить только давление, температура не влияет на равновесный выход;
- 8) уменьшить только давление, температура не влияет на равновесный выход.

Типовые вопросы второго тестирования:

- 1. Наибольшее число фаз, которые могут сосуществовать в равновесии в двухкомпонентной гетерогенной системе, на которую из внешних условий влияют только температура и давление:
 - 1) 1
 - 2) 2
 - 3) 3
 - 4) 4
- 2. Выберете правую часть уравнения, описывающего ход линии на P-T двухфазной диаграмме состояния для однокомпонентной системы, соответствующую левой части dP/dT =
 - 1)

- 4) $\frac{\Delta H}{R} \left(\frac{1}{T_2} \frac{1}{T_1} \right)$ 5) $\frac{\Delta H}{R} \left(\frac{1}{T_1} \frac{1}{T_2} \right)$
- 3) $\frac{\Delta H}{RT^2}$ 6) $\frac{\Delta H}{T\Delta V}$
- 3. Для равновесной системы, состоящей из NH_4Cl (г), NH_3 (г), HCl (г), $NH_4Cl(\kappa)$ определите:
 - число фаз
 - число независимых компонентов
 - число степеней свободы
 - 4. Изотонический коэффициент это поправка, учитывающая:
- 1) увеличение равновесного давления пара над чистым растворителем при нагревании;
 - 2) различие молярных масс растворителя и растворенного вещества;
- 3) изменение числа частиц в растворе при диссоциации или ассоциации молекул;
 - 4) изменение плотности раствора при диссоциации или ассоциации молекул.

Типовые вопросы третьего тестирования:

- 1. Порядком реакции называется:
- 1) количество различных видов частиц исходных веществ;
- 2) количество различных видов частиц исходных веществ и продуктов;
- 3) количество частиц исходных веществ, взаимодействующих в одном элементарном акте превращения;
- 4) количество частиц, взаимодействующих и образующихся в одном элементарном акте превращения;
 - 5) сумма показателей степеней при концентрациях в кинетическом уравнении.
 - 2. Молекулярностью реакции называется:
 - 1) количество различных видов частиц исходных веществ;
 - 2) количество различных видов частиц исходных веществ и продуктов;
- 3) количество частиц исходных веществ, взаимодействующих в одном элементарном акте превращения;

- 4) количество частиц, взаимодействующих и образующихся в одном элементарном акте превращения;
 - 5) показатель степени при концентрации в кинетическом уравнении.
- 3. Кинетическое уравнение необратимой реакции второго порядка (концентрации исходных веществ одинаковы и равны с, т-время):

$K_2 = \underline{\hspace{1cm}}$	
Период полупревращения реакции первого порядка	имеет выражение:
$ au_{1/2} = $	

- 5. Количественной мерой адсорбции не границе раствор-пар является:
- 1) поверхностная энергия;

4.

- 2) поверхностный избыток компонента в поверхностном слое по сравнению с его концентрацией в объемной фазе;
 - 3) поверхностное натяжение;
 - 4) адгезионное взаимодействие.

2.3. Промежуточная аттестация (итоговый контроль)

Допуск к промежуточной аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются успешная сдача всех отчетов по практическим занятиям и положительная интегральная оценка по результатам текущего и рубежного контроля.

Промежуточная аттестация, согласно РПД, проводится в виде экзамена по дисциплине устно по билетам. Билет содержит теоретические вопросы (ТВ) для проверки усвоенных знаний, практические задания (ПЗ) для проверки освоенных умений и комплексные задания (КЗ) для контроля уровня приобретенных владений всех заявленных компетенций.

Билет формируется таким образом, чтобы в него попали вопросы и практические задания, контролирующие уровень сформированности *всех* заявленных компетенций. Форма билета представлена в общей части ФОС образовательнойпрограммы.

2.3.1. Типовые вопросы и задания для экзаменапо дисциплине Типовые вопросы для контроля усвоенных знаний:

- 1. Предмет, задачи, методы и разделы физической химии. Физическая химия как теоретическая основа современной химии.
 - 2. Предмет и методы исследования термодинамики.
- 3. Термодинамическая система и окружающая среда. Типы термодинамических систем: изолированные, закрытые, адиабатически изолированные, открытые.
- 4. Параметры состояния системы: внешние и внутренние, интенсивные и экстенсивные.
- 5. Функции состояния и функции процесса. Термодинамические процессы: равновесные, неравновесные, обратимые, необратимые, самопроизвольные и несамопроизвольные.
- 6. Внутренняя энергия системы, теплота, работа, их определение, единицы измерения. Правила выбора знаков теплоты и работы.

- 7. Первый закон термодинамики, его формулировки. Аналитическое выражение первого закона термодинамики.
- 8. Виды работы. Работа расширения идеальных и реальных газов в различных обратимых и необратимых процессах. Энтальпия.
 - 9. Средняя и истинная теплоёмкость, их связь. Соотношения между C_P и $C_{V.}$
- 10. Теплота и тепловой эффект химической реакции. Закон Гесса и следствия из него.
- 11. Стандартное состояние и стандартные условия. Стандартные энтальпии образования химических соединений. Стандартные теплоты сгорания. Стандартные энтальпии химических реакций.
- 12. Самопроизвольные и несамопроизвольные процессы. Направление самопроизвольных процессов и диссипация энергии. Энтропия как мера необратимого рассеяния энергии.
- 13. Формулировки второго закона термодинамики. Вечный двигатель второго рода. Энтропия. Второй закон термодинамики как закон о неубывании энтропии в изолированной системе.
- 14. Статистический характер второго закона термодинамики, формула Больцмана. Математическая запись второго закона термодинамики для обратимых и необратимых процессов. Абсолютная температура
- 15. Вычисление изменения энтропии в различных обратимых и необратимых процессах. Энтропия идеального газа
- 16. Третий закон термодинамики, постулат Планка. Абсолютные энтропии веществ. Значения энтропии веществ в стандартных условиях, их вычисления. Вычисление изменения энтропии в химических реакциях.
- 17. Фундаментальные уравнения термодинамики. Характеристические функции. Фундаментальное уравнение термодинамики (уравнение Гиббса).
- 18. Независимые переменные фундаментального уравнения термодинамики, их характеристики. Функции состояния энтальпия, энергия Гельмгольца, энергия Гиббса. Характеристические функции и их свойства. Внутренняя энергия как термодинамический потенциал.
- 19. Вычисление изменения энтальпии как функции температуры. Энтальпии фазовых переходов. Энтальпия как характеристическая функция и термодинамический потенциал.
- 20. Энергия Гельмгольца и направление самопроизвольного процесса. Связь энергии Гельмгольца с внутренней энергией, другими термодинамическими функциями и максимальной работой. Энергия Гиббса как термодинамический потенциал и характеристическая функция. Связь энергии Гиббса с максимальной полезной работой.
 - 21. Характеристические функции идеального газа.
- 22. Общие условия равновесия изолированных и закрытых систем и критерии самопроизвольного протекания процессов, выраженные через характеристические функции. Уравнение Гиббса-Гельмгольца.
- 23. Фундаментальные уравнения термодинамики для открытых систем. Внутренняя энергия и другие термодинамические потенциалы открытых систем.

- 24. Химический потенциал. Химический потенциал и энергия Гиббса индивидуальных веществ. Химический потенциал идеального газа.
- 25. Парциальные молярные величины и их определение. Химический потенциал компонента в смеси идеальных газов.
- 26. Закон Дальтона для смеси идеальных газов. Функции смешения идеальных газов.
 - 27. Растворы. Определение понятия «раствор». Классификация растворов.
- 28. Специфика растворов, роль межмолекулярного и химического взаимодействий, понятие о сольватации. Термодинамические условия образования растворов.
- 29. Закон Рауля, идеальные растворы и их определение. Закон Генри. Растворимость газов в жидкостях. Состав насыщенного пара над идеальным раствором. Общее давление насыщенного пара идеального раствора как функция состава раствора и состава насыщенного пара.
- 30. Диаграммы равновесия «жидкость пар», правило рычага. Температура кипения идеальных растворов, физико-химические основы перегонки растворов.
- 31. Неидеальные растворы, виды отклонений от закона Рауля. Различные виды диаграмм равновесия. Законы Гиббса-Коновалова, азеотропные растворы.
- 32. Ограниченная растворимость жидкостей. Равновесие «пар жидкий раствор» в системах с ограниченной взаимной растворимостью и полной взаимной нерастворимостью жидкостей. Химический потенциал компонента в идеальном, предельно разбавленном и реальном растворах.
- 33. Активность, методы определения активностей и коэффициентов активностей.
- 34. Растворимость в идеальных и предельно разбавленных растворах. Уравнение растворимости Шредера. Коллигативные свойства растворов.
- 35. Криоскопия, криоскопическая константа растворителей, изотонический коэффициент Вант-Гоффа, практическое использование криоскопии. Эбулиоскопия. Осмотические явления.
- 36. Уравнение Вант-Гоффа, его термодинамический вывод и область применимости.
- 37. Гетерогенные фазовые равновесия. Условия равновесия в многокомпонентных гетерогенных системах. Правило фаз Гиббса.
- 38. Однокомпонентные системы. Условия равновесия в однокомпонентных гетерогенных системах.
- 39. Уравнение Клаузиуса-Клапейрона. Фазовые переходы I рода: плавление, испарение, сублимация. Зависимость температуры плавления от внешнего давления. Энтропия плавления. Зависимость давления насыщенного пара вещества от температуры.
 - 40. Двухкомпонентные системы и их анализ на основе правила фаз.
- 41. Условия химического равновесия. Закон действующих масс. Термодинамическая константа равновесия, другие виды констант равновесия и связь между ними.

- 42. Уравнение изотермы химической реакции Вант-Гоффа. Стандартная энергия Гиббса химической реакции и её связь с термодинамической константой равновесия.
- 43. Химические равновесия в гетерогенных системах и растворах. Принцип смещения равновесия ле Шателье Брауна.
- 44. Зависимость констант равновесия от температуры. Уравнения изобары и изохоры реакции. Влияние давление на химические равновесия. Фугитивность (летучесть).
- 45. Основные понятия химической кинетики. Истинная и средняя скорость химической реакции, скорость по отдельному реагенту.
- 46. Факторы, влияющие на скорость химической реакции. Кинетические кривые и кинетические уравнения
- 47. Порядок химической реакции. Общий и частный порядок. Молекулярность элементарной химической реакции. Простые и сложные химические реакции.
- 48. Механизм химической реакции и несоответствие механизмов реакций стехиометрическим уравнениям.
 - 49. Закон действующих масс основной постулат химической кинетики.
- 50. Константа скорости химической реакции, её физический смысл и размерность для реакций различных порядков.
- 51. Основные принципы химической кинетики: принцип независимости химических реакций, принцип лимитирующей стадии.
- 52. Кинетические особенности протекания простых необратимых реакций вывод кинетических уравнений, константа скорости, зависимость концентрации участников реакции от времени, время полупревращения: реакции нулевого, первого, второго порядков.
- 53. Методы определения порядка реакции и константы скорости по экспериментальным данным: метод избытка (метод Оствальда), метод подбора уравнений в графическом и аналитическом вариантах, метод определения порядка реакции по времени полупревращения (метод Оствальда-Нойеса), дифференциальный метод Вант-Гоффа.
- 54. Сложные необратимые реакции: последовательные, параллельные. Обратимые реакции.
- 55. Зависимость скорости реакции от температуры. Эмпирическое правило Вант-Гоффа и область его применения. Температурный коэффициент скорости реакции.
 - 56. Уравнение Аррениуса. Понятие об энергии активации химической реакции.
- 57. Нахождение энергии активации химической реакции по экспериментальным данным.
- 58. Теории химической кинетики: теория активных соударений (TAC) и теория активированного комплекса (TAK). Достоинства и недостатки TAC и TAK.
- 59. Основы кинетики гетерогенных процессов. Роль диффузии при протекании гетерогенной химической реакции.
- 60. Диффузионная и кинетическая области протекания гетерогенной реакции. Роль адсорбции при протекании поверхностной реакции.

Типовые вопросы и практические задания для контроля освоенных умений:

- 1. Укажите знак ΔS_{298}^{0} для реакции, ответ мотивируйте: $PCl_{3(r)} + Cl_{2(r)} = PCl_{5(r)}$.
- 2. Истинная молярная теплоемкость алюминия выражается уравнением:

$$C_p = 0.1830 + 1.096 \cdot 10^{-4} T$$

Температура плавления алюминия 658,5°C, теплота плавления 1 кг алюминия 92,4 кДж. Рассчитать, сколько тепла потребуется на расплавление 500 г. алюминия, если начальная температура 25°C.

3. Для реакции разложения иодоводорода константа скорости при 280 °C равна 3,27 а при 300 °C она равна 7,96. Определить энергию активации реакции и константу скорости реакции при температуре 350 °C.

Типовые комплексные задания для контроля приобретенных владений:

1. Определите графическим способом порядок реакции разложения $N_2O_{5(\epsilon)} \to N_2O_{4(\epsilon)} + 0,5O_{2(\epsilon)}$ при температуре 298К (v = cons). В течение реакции общее давление изменялось следующим образом:

t, 4.	0,33	0,50	0,67	0,83	1,67	2,33
<i>P</i> , Па	44665,5	45925,0	47078,0	48144,4	52476,3	54862,2

Начальное давление в системе $P_0 = 41080 \ \Pi a$.

2. Для некоторой реакции при повышении температуры константа скорости изменяется следующим образом (табл.):

T, K	645	714	769
k, моль ⁻¹ ·лм ³ ·с ⁻¹	5.41·10 ⁻³	0.11	0.82

Найдите графическим и аналитическим методами энергию активации этой реакции.

3. На основе опытных данных, полученных при изучении адсорбции углем бензойной кислоты из раствора её в бензоле при 25° C, определить графически константы a и 1/n в уравнении Фрейндлиха:

c, моль/cм ³	0,006	0,025	0,053	0,118
$\frac{x}{m}$, моль/г	0,44	0,78	1,04	1,44

Полный перечень теоретических вопросов и практических заданий в форме утвержденного комплекта экзаменационных билетов хранится на выпускающей кафедре.

2.3.2. Шкалы оценивания результатов обучения на экзамене

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь*, *владеть* заявленных компетенций проводится по 4-х балльной шкале оценивания путем выборочного контроля во время экзамена.

Типовые шкала и критерии оценки результатов обучения при сдаче экзамена для компонентов *знать*, *уметь и владеть* приведены в общей части ФОС образовательной программы.

3. Критерии оценивания уровня сформированности компонентов и компетенций

3.1. Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля при экзамене считается, что полученная оценка за компонент проверяемой в билете компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Типовые критерии и шкалы оценивания уровня сформированности компонентов компетенций приведены в общей части ФОС образовательной программы.

3.2.Оценка уровня сформированности компетенций

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации в виде экзамена используются типовые критерии, приведенные в общей части ФОС образовательной программы.