Министерство науки и высшего образования Российской Федерации Лысьвенский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Пермский национальный исследовательский политехнический университет»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине «Математическое моделирование процессов в машиностроении» Приложение к рабочей программе дисциплины

Направление подготовки: 15.03.05Конструкторско-технологическое

обеспечение машиностроительных производств

Направленность (профиль) Технология машиностроения

образовательной программы: компьютеризированного производства

Квалификация выпускника: «Бакалавр»

Выпускающая кафедра: Технических дисциплин

Форма обучения: Очная, очно-заочная

Курс: 4Семестр: 7

Трудоёмкость:

Кредитов по рабочему учебному плану: 43E Часов по рабочему учебному плану: 144 ч.

Виды промежуточного контроля:

Дифференцированный зачет: 7 семестр

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине является частью (приложением) к рабочей программе дисциплины. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине разработан в соответствии с общей частью фонда средств ДЛЯ проведения промежуточной аттестации образовательной программы, которая устанавливает систему оценивания результатов промежуточной аттестации и критерии выставления оценок. Фонд оценочных средств проведения промежуточной аттестации обучающихся ПО дисциплине **устанавливает** формы И процедуры контроля успеваемости текущего промежуточной аттестации обучающихся по дисциплине.

1. Перечень контролируемых результатов обучения по дисциплине, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины запланировано в течение одного семестра (7-го семестра учебного плана). В семестре предусмотрены аудиторные лекционные, практические занятия, а также самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируются компоненты компетенций *знать*, *уметь*, *владеть*, указанные в РПД, которые выступают в качестве контролируемых результатов обучения по дисциплине (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала, сдаче отчетов по практическим занятиям и дифференцированного зачета. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

			•			
	Вид контроля					
Контролируемые результаты обучения по	Текущий	кущий Рубежный		Итоговый		
дисциплине (ЗУВы)	TO	ОПР	Т/КР	дифференцирова нный зачёт		
Усвоенныезнания						
3.13нать теорию решения стандартных	TO		T1	TB		
инженерных задач с помощью современных			T2			
вычислительных технологий: численные						
методы решения алгебраических и						
трансцендентных уравнений, обыкновенных						
дифференциальных уравнений,						
функциональное назначение и						
математические основы решения задач						
интерполяции и аппроксимации при						
обработке экспериментальных данных.						
3.2	TO		T1	TB		
Знатьматематическоемоделирование как мето			T2			
дпроектирования объектовновой техники ите						
хнологическихпроцессов, правила иметоды п						
рименения						
математическогомоделирования приразработ						
ке конструкций изделий машиностроения и						
технологических процессов.						

3.3	TO		T1	TB
Знать функциональноеназначение системком			T2	
пьютернойматематики, техническиеаспекты и				
х прикладногоиспользования и общуюметодо				
логию их				
практического освоения, функции иалгоритм				
ыреализации стандартныхинженерных задач				
спомощью системкомпьютерной математики				
«MathCAD».				
3.4 Знать основные подходы кразработке и	ТО		T1	TB
методологиюпостроения ииспользованиямат	10		T2	15
ематических моделей процессов и			12	
объектовмашиностроительных производств, к				
ритерииоптимальности, методы иалгоритмы				
оптимальногопроектированиятехнических об				
ъектов и				
физических процессов(определения оптималь				
ных параметров и				
функционированияизделий и процессовобраб				
отки материалов).				
<u> </u>	ные умения			
У.1Уметьиспользовать численные методы	ibic ymennin	ОПЗ	T1	ПЗ
при решении задач определения параметров и		1-9	T2	110
режимов физических процессов				
функционирования машин и обработки				
материалов.				
У.2 Уметьиспользовать на практике основные		ОПЗ	T1	ПЗ
подходы и методологию математического		1-9	T2	113
моделирования: разрабатывать теоретические			12	
модели, позволяющие исследовать параметры				
и режимы функционирования проектируемых				
изделий, технологических процессов, средств				
и систем машиностроительных производств.				
y.3		ОПЗ	T1	ПЗ
Уметьумеет работать ссистемой «MathCAD» к		1-9	T2	113
ак основнойпрограммной средой,			12	
предназначенной для математического				
моделирования прирешениитиповыхинженер				
ных задач, решатьих с помощью встроенных				
функций системкомпьютернойматематики.				
У.4		ОПЗ	T1	ПЗ
Уметьадаптироватьзнанияматематики, физик		1-9	T2	113
и, теоретической механики идругих базовых д				
исциплинидисциплин профиляподготовкик а				
нализуконкретныхрабочихпроцессовфункцио				
нирования машини обработки материалов,				
правильно определять				
цели расчёта параметров конструкций				
изделий, осуществлять постановку задач для				
математического				
анализа проектнойситуации; применять				
математические методы				
взадачах оптимизациипроцессов				
воиди нал оптинизациинроцессов				

функционирования и конструкции						
технических объектов.						
Приобретенные владения						
В.1 Владетьопытом построения и анализа	ОПЗ	ПЗ				
математических моделей в форме	1-9					
непрерывных функциональных зависимостей						
на основе численных данных, моделей в						
форме дифференциальных уравнений по						
стандартным методикам на базе систем						
автоматизированного проектирования в						
области проведения математических						
расчетов.						
В.2Владетьопытом разработки и	ОПЗ	ПЗ				
исследования	1-9					
математических моделейизделий машиностро						
ения, средств оснащения						
технологическихпроцессов,						
машиностроительных производств,						
оборудования.						
В.3Владеть опытомпостроения и анализа	ОПЗ	ПЗ				
математических моделей вформе непрерывны	1-9					
хфункциональных						
зависимостей на основечисленных данных,						
моделей в формедифференциальных						
уравнений по стандартнымметодикам на						
базе системавтоматизированного						
проектирования в областипроведения						
математических расчётов.						
В.4 Владетьнавыкамииспользования	ОПЗ	П3				
математическогомоделирования для	1-9					
определениятехнологических,конструкторски						
х иэксплуатационныхпараметровфункционир						
ования						
изделий.	×					

C – собеседование по теме; TO –теоретический опрос; K3 – комплексное задание (индивидуальное задание); $O\Pi3$ – отчет по практическому занятию; T/KP – рубежное тестирование (контрольная работа); TB – теоретический вопрос; $\Pi3$ – практическое задание.

Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в форме диф.зачета, проводимая с учётом результатовтекущего и рубежного контроля.

2. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной эффективности учебного процесса, управление процессом формирования заданных компетенций обучаемых, повышение мотивации к учебе и предусматривает оценивание хода освоения дисциплины. В соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования — программам бакалавриата,

специалитета и магистратуры в ПНИПУ предусмотрены следующие виды и периодичность текущего контроля успеваемости обучающихся:

- входной контроль, проверка исходного уровня подготовленности обучаемого и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента «знать» заданных компетенций) на каждом групповом занятии и контроль посещаемости лекционных занятий;
- промежуточный и рубежный контроль освоения обучаемыми отдельных компонентов «знать», «уметь» заданных компетенций путем контрольных опросов, тестирования, защиты отчетов по практическим работам, рефератов, эссе и т.д.

Рубежный контроль по дисциплине проводится на следующей неделе после прохождения модуля дисциплины, а промежуточный — во время каждого контрольного мероприятия внутри модулей дисциплины;

- межсессионная аттестация, единовременное подведение итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы;
 - контроль остаточных знаний.

2.1. Текущий контроль усвоения материала

Текущий контроль усвоения материала в форме собеседования или выборочного теоретического опроса студентов проводится по каждой теме. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений (табл. 1.1) в форме защиты отчетов по практическим занятиям и рубежного тестирования.

2.2.1. Защита отчетов по практическим занятиям

Всего запланировано 9 практических занятий. Типовые темы практических занятий приведены в РПД.

Защита отчетов по практическим занятиям проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.2.2. Рубежное тестирование

Согласно РПД запланировано 2 рубежных тестирования (Т) после освоения студентами лекционного и практического материала. ПервоеТ- «Основные понятия моделирования», второеТ - «Математическое моделирование в задачах оптимизации».

Типовые задания тестирования (см. Приложение 1).

Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.3. Промежуточная аттестация

Допуск к промежуточной аттестации осуществляется по результатам текущего

и рубежного контроля. Условиями допуска являются успешная сдача всех отчетов по практическим занятиями положительная интегральная оценка по результатам текущего и рубежного контроля.

2.3.1. Процедура промежуточной аттестации без дополнительного аттестационного испытания

Промежуточная аттестация проводится в форме дифференцированного зачета. Дифференцированный зачет по дисциплине основывается на результатах выполнения практических заданий студента по данной дисциплине.

Критерии выведения итоговой оценки за компоненты компетенций при проведении промежуточной аттестации в виде зачетаприведены в общей части ФОС образовательной программы.

2.3.2. Процедура промежуточной аттестации с проведением аттестационного испытания

В отдельных случаях (например, в случае переаттестации дисциплины) промежуточная аттестация в виде диф.зачета по дисциплине может проводиться с проведением аттестационного испытания по билетам. Билет содержит теоретические вопросы (ТВ) для проверки усвоенных знаний, практические задания (ПЗ) для проверки освоенных умений и комплексные задания (КЗ) для контроля уровня приобретенных владений всех заявленных компетенций.

Билет формируется таким образом, чтобы в него попали вопросы и практические задания, контролирующие уровень сформированности *всех* заявленных компетенций.

2.3.2.1. Типовые вопросы и задания для диф.зачетапо дисциплине Типовые вопросы для контроля усвоенных знаний (см. Приложение 2).

2.3.2.2. Шкалы оценивания результатов обучения на дифференцированном зачете

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь*, заявленных компетенций проводится по 4-х балльной шкале оценивания.

Типовые шкалы и критерии оценки результатов обучения при сдаче дифференцированного зачета для компонентов знать, уметь приведены в общей части ФОС образовательной программы.

3. Критерии оценивания уровня сформированности компонентов и дисциплинарных компетенций

3.1. Оценка уровня сформированности компонентов дисциплинарных компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля при диф.зачете считается, что полученная оценка за компонент проверяемой в билете компетенции обобщается на соответствующий компонент всехкомпетенций, формируемых в рамках данной учебной дисциплины.

Типовые критерии и шкалы оценивания уровня сформированности компонентов компетенций приведены в общей части ФОС образовательной программы.

3.2.Оценка уровня сформированности компетенций

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации в виде диф.зачета используются типовые критерии, приведенные в общей части ФОС образовательной программы.

Типовые задания тестирования

Типовые задания первого тестирования:

- 1. Математическая модель объекта это:
- а)созданная из какого-либо материала модель, точно отражающая внешние признаки объекта-оригинала;
 - б)описание в виде схемы внутренней структуры изучаемого объекта;
- в)совокупность данных, содержащих информацию о количественных характеристиках объекта и его поведения в виде таблицы;
- г)совокупность записанных на языке математики формул, отражающих те или иные свойства объекта-оригинала или его поведение;
 - д)последовательность электрических сигналов.
 - 1. ______ это графическое изображение причинно-следственных связей между элементами?
 - а) Иерархическая структура;
 - б) Дерево целей;
 - в) Диаграмма причинно-следственных связей;
 - г) Дендрограмма.
- 2. Если анализ размерностей не приводит к формуле, то он может проводиться с целью:
 - а) установления полноты группы исходных величин;
- б) получения ответа на вопрос, существует ли функция, связывающая исходные величины;
- в) получения "частей" оставшейся неизвестной, но существующей функции, связывающей исходные величины;
 - г) выявления критериев подобия объектов или процессов;
- д) ранжирования величин, принимаемых за входные по степени их влияния на величину, принятую в качестве выходной;
 - е) во всех случаях.
 - 4. Целевая функция это...
 - а) любая функция, у которой есть экстремумы;
 - б) любая функция, у которой есть минимумы;
 - в) любая функция, у которой нет экстремумов;
 - г) функция, экстремумы которой необходимо найти;
 - д) любая функция, у которой есть максимумы.

Типовые задания второго тестирования:

- 1. Динамические характеристики объектов- это:
- а) величины, описывающие поведение объектов в динамике;
- б) функции, описывающие поведение объектов в динамике;
- в) функции, описывающие реакции объектов на входные воздействия;
- г) функции, описывающие реакции объектов на типовые входные воздействия;
- д) характеристики, описывающие особенности поведения объектов в динамике.

- 2. Переходная функция это:
- а) функция, описывающая изменение состояния объекта после приложения входного воздействия;
- б) функция, описывающая реакцию объекта после приложения ступенчатого типового входного воздействия;
- в) функция, описывающая изменение состояния объекта после прекращения входного воздействия;
- г) функция, характеризующая способность объекта реагировать на входные воздействия.
- 3. Для решения задачи условной оптимизации методом неопределенных множителей Лагранжа обязательно:
 - а) значение аналитического выражения оптимизируемой функции;
 - б) наличие ограничений в виде равенств;
 - в) линейность ограничений;
 - 4. Вектор градиента функции в точке экстремума равен:
 - а) минимальному значению;
 - б) максимальному значению;
 - в) нулю.
- 5. Каким свойством обладает линия уровня в графическом методе решения задачи линейного программирования?
 - а) показывает направление убывания целевой функции;
 - б) показывает направление возрастания целевой функции;
 - в) целевая функция принимает только значение больше нуля;
- г) целевая функция принимает постоянное значение для любой точки линии уровня;
 - д) целевая функция принимает нулевое значение.

Перечень типовых вопросов для подготовки к диф.зачету

- 1. Понятия модели и моделирования. Объекты моделирования. Задачи моделирования процессов и систем в машиностроении;
- 2. Виды моделирования. Аналитическое моделирование. Имитационное моделирование;
- 3. Классификация математических моделей. Уровни моделирования технических объектов. Модели микро-, макро- и метауровней;
 - 4. Методы получения математических моделей;
 - 5. Метод конечных элементов в моделировании процессов обработки;
 - 6. Требования, предъявляемые к моделям;
- 7. Алгоритм построения математической модели. Основные этапы разработки математических моделей;
 - 8. Обобщенная методика построения математических моделей;
 - 9. Физическая и математическая модель процесса точения;
 - 10. Физическая и математическая модель процесса сверления и зенкерования;
 - 11. Физическая и математическая модель процесса фрезерования;
 - 12. Физическая и математическая модель процесса шлифования;
 - 13. Модель тепловых и силовых процессов при точении;
 - 14. Модель тепловых и силовых процессов при фрезеровании;
 - 15. Модель тепловых и силовых процессов при шлифовании;
 - 16. Учет сил резания при моделировании процессов обработки;
- 17. Моделирование точности обработки. Моделирование погрешностей обработки, связанных с упругими деформациями технологической системы, размерным износом инструмента, установкой заготовок;
 - 18. Программное обеспечение, реализующее метод конечных элементов;
 - 19. Программное обеспечение, реализующее твердотельное моделирование;
- 20. SolidWorks: моделирование силовых и тепловых процессов. Создание геометрии режущего инструмента, заготовки, элемента стружки;
 - 21. Методы оптимизации процессов резания и деформирования;
- 22. Постановка задачи однопараметрической однокритериальной задачи оптимизации. Исследование области оптимума;
 - 23. Основные принципы выбора критериев оптимальности;
- 24. Задачи нелинейного программирования. Численные методы поиска экстремуму функции одной переменной: классический метод;
- 25. Численные методы поиска экстремуму функции одной переменной: метод равномерного перебора, метод золотого сечения;
- 26. Численные методы поиска экстремума функции п переменных: метод покоординатного спуска, метод линеаризации;
- 27. Численные методы поиска экстремума функции п переменных: метод линеаризации;
- 28. Методы решения многокритериальных задач оптимизации. Постановка задачи многокритериальной задачи оптимизации;

- 29. Метод поиска Парето-эффективных решений;
- 30. Метод решения многокритериальных задач оптимизации с использованием обобщенного (интегрального) критерия.

Типовые задания для контроля приобретенных умений и владений:

- 1. Построить математическую модель и определить оптимальные режимы резания при точении гладкой заготовки вала из стали 45 (ГОСТ 1050-88) диаметром D=134 мм и длиной 350 мм в размер d=130,5h12 с шероховатостью обработанной поверхности Rz=40 мкм.
- 2. Разработать математическую модель по влиянию элементов режима резания (V,S,t) на силу резания P_Z при точении методом многофакторного эксперимента.