Министерство науки и высшего образования Российской Федерации Лысьвенский филиал

федерального государственного автономного образовательного учреждения высшего образования

«Пермский национальный исследовательский политехнический университет»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине

«Физика, специальные главы» Приложение к рабочей программе дисциплины

Направление подготовки: 13.03.02 Электроэнергетика и электротехника

Направленность (профиль) Эле

Электроснабжение

образовательной программы:

Квалификация выпускника: «Бакалавр»

Выпускающая кафедра: Общенаучных дисциплин

Формаобучения: Очная/очно-заочная/заочная

Курс: 2/3/3 Семестр: 4/5/5

Трудоёмкость:

Кредитов по рабочему учебному плану: 3 ЗЕ Часов по рабочему учебному плану: 108 ч.

Форма промежуточной аттестации:

Зачёт: 4/5/5 семестр

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине является частью (приложением) к рабочей программе дисциплины. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине разработан в соответствии с общей частью фонда оценочных средств для проведения промежуточной аттестации основной образовательной программы, которая устанавливает систему оценивания результатов промежуточной аттестации и критерии выставления оценок. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы и процедуры текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине.

1. Перечень контролируемых результатов обучения по дисциплине, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины запланировано в течение одного семестра (4-го семестра учебного плана очной формы обучения; 5-го семестра учебного плана очно-заочной и заочной форм обучения). В семестре предусмотрены аудиторные лекционные и практические занятия, а также самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируются компоненты компетенций знать, уметь, владеть, указанные в РПД, которые выступают в качестве контролируемых результатов обучения по дисциплине (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала, защите практических занятий и зачета. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

	Вид контроля					
Контролируемые результаты обучения по дисциплине (ЗУВы)	Текущий	Рубежный		Итоговый		
	то	ОПЗ	КР	Зачёт		
Усвоенные знания						
3.1 Знать основные физические явления и	TO		КР	TB		
основные законы физики, границы их приме-						
нимости, возможности использования в прак-						
тических приложениях						
3.2 Знать методы решения физических задач,	TO		КР	TB		
важных для технических приложений						
3.3 Знать основные приемы и технологии ра-	TO		КР	TB		
боты с различными видами информации						
3.4 Знать современные методы и средства	TO		КР	TB		
измерения электрических и неэлектрических						
величин.						
Освоенные умения						
У.1 Уметь использовать основные понятия,		ОПЗ	КР	ПЗ		
законы и модели физики, оперировать ими		1-9				

для решения прикладных задач, проводить					
поиск и систематизацию соответствующей					
информации;					
У.2 Уметь применять методы физико-	ОПЗ		П3		
математического анализа для решения при-	1-9				
кладных задач, использовать адекватные ме-					
тоды физического и математического моде-					
лирования и расчета с применением про-					
граммных средств					
У.3 Уметь проводить измерения электриче-	ОПЗ	3 KP	П3		
ских и неэлектрических величин, обрабаты-	1-9	1			
вать результаты измерений и оценивать их					
погрешность					
Приобретенные владения					
В.1 Владеть навыками использования основ-	ОПЗ	3 KP	П3		
ных общефизических законов и принципов в	1-9				
важнейших практических приложениях, ме-					
тодами решения типовых задач					
В.2 Владетьнавыками использования мето-	ОПЗ	З КР	П3		
дов физического и математического модели-	1-9				
рования в инженерной практике, анализа и					
интерпретирования его результатов, в том					
числес использованием прикладных про-					
граммных средств					
В.З Владеть навыками проведения измерения	ОПЗ	3 KP	П3		
различных параметров объектов профессио-	1-9				
нальной деятельности					

С – собеседование по теме; ТО – теоретический опрос; ОПЗ – отчет по практическому занятию; КР –контрольная работа; ТВ – теоретический вопрос; ПЗ – практическое задание.

Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в форме зачета, проводимая с учётом результатов текущего и рубежного контроля.

2. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной эффективности учебного процесса, управление процессом формирования заданных компетенций обучаемых, повышение мотивации к учебе и предусматривает оценивание хода освоения дисциплины. В соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования — программам бакалавриата, специалитета и магистратуры в ПНИПУ предусмотрены следующие виды и периодичность текущего контроля успеваемости обучающихся:

- входной контроль, проверка исходного уровня подготовленности обучаемого и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента «знать» заданных компетенций) на каждом групповом занятии и контроль посещаемости лекционных занятий;

- промежуточный и рубежный контроль освоения обучаемыми отдельных компонентов «знать», «уметь» заданных компетенций путем компьютерного или бланочного тестирования, контрольных опросов, контрольных работ (индивидуальных домашних заданий), защиты отчетов по лабораторным и практическим работам, рефератов, эссе и т.д.

Рубежный контроль по дисциплине проводится на следующей неделе после прохождения модуля дисциплины, а промежуточный — во время каждого контрольного мероприятия внутри модулей дисциплины;

- межсессионная аттестация, единовременное подведение итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы;
 - контроль остаточных знаний.

2.1. Текущий контроль усвоения материала

Текущий контроль усвоения материала в форме собеседования или выборочного теоретического опроса студентов проводится по каждой теме. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений (табл. 1.1) в форме защиты практических занятий и рубежных контрольных работ

2.2.1. Защита практических занятий

Всего запланировано 9 практических занятий. Типовые темы практических занятий приведены в РПД.

Защита практических занятий проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.2.3. Рубежная контрольная работа

Запланировано 6 рубежных контрольных работ (КР) после освоения студентами разделов дисциплины. Первая КР 1 - «Механика», вторая КР 2 - «Колебания и волны», третья КР 3 «Статистическая физика и термодинамика», четвертая КР 4 «Электростатика и постоянный электрический ток», пятая КР 5 «Магнетизм», шестая КР 6 «Квантовая физика».

Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

Типовые задания первой КР:

1. В "рельсотроне", или электромагнитной пушке, снаряд разгоняется магнитным полем. Какова должна быть длина разгонного участка "рельсотрона", чтобы снаряд за t = 0.01 с разгонялся до скорости v = 8 км/с? Считая силу магнитного

воздействия на снаряд постоянной, определить, во сколько раз она превышает вес снаряда на поверхности Земли.

- **2.** Скорость шарика, падающего вниз в глицерине, меняется со временем по закону $v = v_0(1-e^{-\alpha t})$, где $v_0 = 6.1$ см/с; $\alpha = 140$ с⁻¹. Определить плотность шарика $\rho_{\text{ш}}$, если известно: 1) через t = 0.01 с после начала движения сила вязкого трения по модулю в 3 раза больше равнодействующей всех сил, приложенных к шарику; 2) плотность глицерина равна $\rho_{\Gamma} = 1.25 \cdot 10^3$ кг/м³.
- **3.** Сила сопротивления, действующая на пузырек пара, поднимающийся в жидкости, определяется по формуле Стокса $F_{\rm c}=6\pi R\,\eta v$, где R радиус пузырька; η коэффициент вязкости жидкости; v скорость движения пузырька. Определить коэффициент вязкости жидкости, если R=3 мм, а скорость движения пузырька постоянна и равна v=0.02 м/с. Плотность пара считать пренебрежимо малой по сравнению с плотностью жидкости $\rho_{\rm m}=1$ г/см³.

Типовые задания второй КР:

- **1.** Шарик массы m = 0.6 кг, подвешенный к спиральной пружине жесткостью k = 30 Н/м, совершает затухающие колебания. Логарифмический декремент затухания $\lambda = 0.01$. Определить время t, за которое амплитуда колебаний уменьшится в $\eta = 3$ раза и число колебаний N шарика за это время.
- **2.** Шарик массой m=20 г закреплен на середине горизонтально натянутой струны длиной l=1,5 м. Найти период T малых вертикальных колебаний шарика. Натяжение струны считать постоянным и равным F=8 Н. Влиянием силы тяжес пренебречь.
- **3.** Доска с лежащим на ней бруском совершает горизонтальные гармонические колебания с амплитудой A=15 см. Определить коэффициент трения μ между доской и бруском, если брусок начинает скользить по доске, когда ее период колебаний становится меньше T=2,0 с.
- **4.** Центр масс физического маятника установлен над точкой подвеса. Возвращаясь к положению устойчивого равновесия, маятник проходит его с угловой скоростью $\omega = 10$ рад/с. Найти период T малых колебаний этого маятника.
- **5.** Механический осциллятор совершает гармонические колебания вдольоси Ox. Его полная энергия W=8 мкДж, максимальная сила Fm=0,6 мH, период колебаний T=4 с, начальная фаза $\phi=\pi/3$. Написать уравнение колебаний осциллятора.

Типовые задания третьей КР:

- **1.**Определить плотность и концентрацию низкотемпературной азотной плазмы, если атомарная концентрация $n_{\rm a}$ = $2\cdot 10^{18}$ м⁻³, а степень диссоциации плазмы α = 80%.
- **2.** Определить молярную массу высокотемпературного сверхпроводника $RbCs_2C_{60}$, синтезируемого путем легирования сферических молекулярных кристаллов фуллерена C_{60} атомами щелочных металлов. Определить массу поверхностного сверхпроводящего слоя площадью 1 мм² и толщиной 3,5 нм, считая диаметр одной кристаллической сферы 0,7 нм.

3. Определить концентрацию атомов, сравнить объемную плотность вещества в оболочке и в объеме одного молекулярного сферического кристалла фуллерена C_{60} . Толщина сферической оболочки фуллерена равна 0,1 нм, радиус молекулы C_{60} равен 0,357 нм.

Типовые задания четвертой КР:

- **1.** Определить в каких диапазонах может изменяться удельное сопротивление углеродных нанотрубок, если при измерении сопротивления нанотрубок диаметром от 1,4 до 50 нм и длиной от 1 до 5 мкм, было получено одинаковое значение, равное R=12,9 кОм. Рассчитать силу тока в нанотрубке с минимальной проводимостью, если предельная плотность тока составляет $j_{max}=10^7 \text{ A/cm}^2$.
- **2.** Вольфрамовая нить электрической лампочки накаливания имеет в накаленном состоянии температуру $t^{\circ} = 2300$ °C. Какова плотность j и сила тока I, протекающего по нити, если её диаметр d = 20 мкм, длина l = 0,5 м, а напряжение на нити U = 200 В? Удельное сопротивление вольфрама при 0 °C равно $\rho_0 = 5,5\cdot10^{-8}$ Ом·м, температурный коэффициент сопротивления $\alpha = 4,6\cdot10^{-3}$ K⁻¹.
- **3.** Сила тока в электродуге плазмотрона равна 200 А. Для создания эффекта сканирующего воздействия плазменной дуги на поверхность материала на дугу воздействуют поперечным магнитным полем, изменяющимся по закону $B=B_0\cdot\sin(2\pi\nu t)$, $B_0=0.02$ Тл, $\nu=50$ Гц. Определить среднее значение модуля отклоняющей силы в расчете на единицу длины дуги.

Типовые задания пятой КР:

- **1.** Сила тока в электродуге плазмотрона равна 200 А. Для создания эффекта сканирующего воздействия плазменной дуги на поверхность материала на дугу воздействуют поперечным магнитным полем, изменяющимся по закону $B=B_0\cdot\sin(2\pi\nu t)$, $B_0=0.02$ Тл, $\nu=50$ Гц. Определить среднее значение модуля отклоняющей силы в расчете на единицу длины дуги.
- **2.** Цепь переменного тока образована последовательным соединением активного сопротивления R=800 Ом, индуктивности L=1,27 Гн и емкости C=1,59 мкФ. На зажимы подано напряжение U=127 В с частотой v=50 Гц. Найти действующее значение силы тока $I_{9\varphi\varphi}$, сдвиг фаз между током и напряжением, а также мощность, выделяющуюся в цепи.
- **3.** Генератор радиоволн состоит из конденсатора и катушки индуктивности. Площадь пластин конденсатора $S = 0.025 \text{ м}^2$, расстояние между пластинами d = 1 мм, диэлектрическая проницаемость диэлектрика $\varepsilon = 4$. Определить длину волны λ , излучаемую генератором, если известно, что при изменении тока на 2 A за 0,5 с в катушке индуцируется э.д.с. равная 1 мВ.
- **4.** Определите длину электромагнитной волны в вакууме, на которую настроен колебательный контур, если максимальный заряд конденсатора $q_m = 2 \cdot 10^{-8}$ Кл, а максимальная сила тока в контуре $I_m = 1$ А. Определите напряжение на конденсаторе в момент, когда энергия магнитного поля составляет 75% от её максимального значения. Индуктивность контура равна $L = 2 \cdot 10^{-7}$ Гн.

Типовые задания шестой КР:

- **1.** Концентрация электронов в плазменной дуге $n_{\rm e}=10^{19}~{\rm M}^{-3}$. Определите длину волны де Бройля для электронов, если плотность тока в дуге составляет $2 \cdot 10^6~{\rm A/m}^2$.
- **2.** Энергия протонов, ускоряемых в БАК (Большом Адронном Коллайдере, ЦЕРН, Женева), может достигать 7 ТэВ. Определить длину волны де Бройля λ для таких протонов.
- **3.** Протон движется со скоростью равной 99,99975% от скорости света в вакууме. С какой точностью может быть определена координата протона?
- **4.** В проектируемом Международном линейном коллайдере (ILC, Linac) сфокусированный пучок позитронов с энергией E=250 ГэВ будет представлять собой плоскую ленту длиной 640 нм. Используя соотношение неопределенностей, оценить неопределенность энергии позитронов в пучке.

2.3. Промежуточная аттестация (итоговый контроль)

Допуск к промежуточной аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются успешная защита всех практических занятий и положительная интегральная оценка по результатам текущего и рубежного контроля.

2.3.1. Процедура промежуточной аттестации без дополнительного аттестационного испытания

Промежуточная аттестация проводится в форме зачета. Зачет по дисциплине основывается на результатах выполнения предыдущих индивидуальных заданий студента по данной дисциплине.

Критерии выведения итоговой оценки за компоненты компетенций при проведении промежуточной аттестации в виде зачета приведены в общей части ФОС образовательной программы.

2.3.2. Процедура промежуточной аттестации с проведением аттестационного испытания

В отдельных случаях (например, в случае переаттестации дисциплины) промежуточная аттестация в виде зачета по дисциплине может проводиться с проведением аттестационного испытания по билетам. Билет содержит теоретические вопросы (ТВ) для проверки усвоенных знаний, практические задания (ПЗ) для проверки освоенных умений и комплексные задания (КЗ) для контроля уровня приобретенных владений всех заявленных компетенций.

Билет формируется таким образом, чтобы в него попали вопросы и практические задания, контролирующие уровень сформированности *всех* заявленных компетенций.

2.3.2.1. Типовые вопросы и задания для зачета по дисциплине Типовые вопросы для контроля усвоенных знаний:

- 1. Стационарное течение идеальной жидкости.
- 2. Уравнение Бернулли.
- 3. Упругие напряжения и деформации.
- 4. Кинематическое описание движения жидкости.
- 5. Векторные поля. Поток и циркуляция векторного поля.
- 6. Уравнения движения и равновесия жидкости.

- 7. Энергия упругих деформаций твердого тела.
- 8. Закон гармонических колебаний; их изображение на графиках и векторных диаграммах.
- 9. Сложение колебаний. Разложение и синтез колебаний, понятие о спектре колебаний.
- 10. Связанные колебания. Комплексная форма представления гармонических колебаний.
- 11. Уравнение идеального осциллятора и его решение.
- 12. Свободные затухающие колебания осциллятора с потерями.
- 13. Вынужденные колебания. Резонанс.
- 14. Нормальные моды связанных осцилляторов.
- 15. Время установления вынужденных колебаний и его связь с добротностью осциллятора.
- 16. Явления переноса. Диффузия, теплопроводность, внутреннее трение.
- 17. Число столкновений и длина свободного пробега молекул идеального газа.
- 18. Эмпирические уравнения переноса. Осмос. Применение осмоса в производстве.
- 19. Термоэлектрические явления. Термоэлектронная эмиссия и контактные явления: термоэлектронная эмиссия и ее практическое применение. Контактная разность потенциалов. Закон Вольта.
- 20. Термоэлектричество. Явление Пельтье и Томсона. Применение контактных явлений.
- 21. Классификация магнетиков. Ферромагнетизм. Применение ферро- и ферримагнетиков. Новые магнитные материалы.
- 22. Вектор намагниченности и его связь с плотностью молекулярных токов.
- 23. Волновое уравнение для электромагнитного поля.
- 24. Излучение нагретых тел. Спектральные характеристики теплового излучения.
- 25. Законы Кирхгофа, Стефана-Больцмана и Вина. Гипотеза Планка.
- 26. Квантовое объяснение законов теплового излучения.
- 27.Опыт Боте.
- 28. Эффект Комптона.
- 29. Движение электронов в периодическом поле кристалла.
- 30.Структура зон в металлах, полупроводниках и диэлектриках.
- 31.Собственная и примесная проводимость полупроводников.
- 32. Уровень Ферми в чистых и примесных полупроводниках.
- 33. Запирающий слой в полупроводниках.
- 34. Температурная зависимость проводимости полупроводников.
- 35. Фотопроводимость полупроводников.
- 36.Процессы генерации и рекомбинации носителей заряда.
- 37. Эффект Холла в металлах и полупроводниках.
- 38. Элементы квантовой теории металлов.
- 39. Транзисторы.

Типовые практические задания для контроля освоенных умений и приобретенных владений:

- **1.** С помощью рентгеновского лазера, расположенного на круговой орбите H=150 км, требуется уничтожить крылатую ракету длиной l=5 м, движущуюся горизонтально со скоростью v=300 м/с на высоте h=15 м. Какое расстояние пролетит ракета за промежуток времени между "выстрелом" и ее поражением? Следует ли вводить упреждение в направление лазерного луча?
- **2.** Траектория движения точки задается уравнениями x = At и $y = Bt^2$, где A = 3 м/с; B = 1 м/с². Определить угол между полным и нормальным ускорениями в момент времени t = 2 с, когда радиус кривизны траектории равен R = 21 м. Начертить траекторию за первые две секунды движения.
- **3.** Траектория движения точки задается уравнениями $x = A \cos \omega t$ и $y = B \sin \omega t$, где A = B = 1 м; $\omega = 2\pi$ с⁻¹. Начертить траекторию движения и найти ускорение, с которым движется точка.
- **4.** Тело брошено с высоты H=10 м вверх под углом α =30 0 к горизонту с начальной скоростью v_{0} =20 м/с. Записать уравнение траектории тела и определить её кривизну через t=4 с после начала движения.
- **5.** В "рельсотроне", или электромагнитной пушке, снаряд разгоняется магнитным полем. Какова должна быть длина разгонного участка "рельсотрона", чтобы снаряд за t = 0.01 с разгонялся до скорости v = 8 км/с? Считая силу магнитного воздействия на снаряд постоянной, определить, во сколько раз она превышает вес снаряда на поверхности Земли.
- **6.** Скорость шарика, падающего вниз в глицерине, меняется со временем по закону $v = v_0(1-e^{-\alpha t})$, где $v_0 = 6,1$ см/с; $\alpha = 140$ с⁻¹. Определить плотность шарика $\rho_{\text{ш}}$, если известно: 1) через t = 0,01 с после начала движения сила вязкого трения по модулю в 3 раза больше равнодействующей всех сил, приложенных к шарику; 2) плотность глицерина равна $\rho_{\Gamma} = 1,25\cdot 10^3$ кг/м³.
- **7.** Сила сопротивления, действующая на пузырек пара, поднимающийся в жидкости, определяется по формуле Стокса $F_c = 6\pi R \eta v$, где R радиус пузырька; η коэффициент вязкости жидкости; v скорость движения пузырька. Определить коэффициент вязкости жидкости, если R=3 мм, а скорость движения пузырька постоянна и равна v=0.02 м/с. Плотность пара считать пренебрежимо малой по сравнению с плотностью жидкости $\rho_{\rm w}=1$ г/см³.
- **8.** Проволока выдерживает груз массой m_1 =110 кг при вертикальном подъеме его с некоторым ускорением и груз массой m_2 = 690 кг при опускании его с таким же по модулю ускорением. Какова максимальная масса груза, который сможет выдержать эта проволока, если поднимать его с постоянной скоростью?
- **9.** Атлет раскручивает молот (шар массой m = 7 кг, привязанный к тросу) так, что шар движется по окружности радиусом R = 1 м, а путь, пройденный шаром во время раскрутки, растет в соответствии с уравнением $s = Bt + Ct^2$, где B = 4 м/с; C = 2 м/с². Трос выдерживает нагрузку $F_{\pi} = 14$ кН. Какой запас прочности имеет трос в момент броска молота, если продолжительность раскрутки t = 4 с?
- **10.** Машина Атвуда, представляющая собой систему из двух тел массами m_1 и m_2 , соединенных невесомой нитью, перекинутой через невесомый блок, может

быть использована для взвешивания тел. Определить массу тела m_1 , если тело массой $m_2 = 2$ кг движется вниз с ускорением a = 1,4 м/с².

- **11.** На прямолинейно движущееся со скоростью v=5 м/с тело массой m=2 кг действует в направлении движения убывающая по времени сила $F=F_0-At$, где $F_0=5$ H, A=2,5 H/c. Каков будет импульс тела по окончании действия силы?
- **12.** Одним из движителей космических кораблей может быть "световой парус" зеркальная пленка, получающая импульс при падении на нее света. Начальная скорость корабля равна $v_1 = 7.9$ км/с (первая космическая), конечная скорость равна $v_2 = 11.2$ км/с (вторая космическая). Сколько фотонов (частиц света) должно отразиться от "светового паруса", если: 1) свет падает на "парус" по нормали; 2) масса корабля с "парусом" m = 500 т; 3) масса фотона $m_{\phi} = 0.5 \cdot 10^{-35}$ кг?
- **13.** Какой импульс получит покоящийся электрон при попадании в него γ -кванта, если: 1) масса падающего γ -кванта $m_1 = 3,3 \cdot 10^{-30}$ кг; 2) масса рассеянного γ -кванта $m_2 = 0,71 \cdot 10^{-30}$ кг; 3) угол между направлениями движения падающего и рассеянного γ -квантов равен $\theta = 90^{\circ}$?
- **14.** Фотон падает по нормали на металлическую пластинку и в результате фотоэффекта выбивает из нее электрон, движущийся по нормали в направлении, противоположном направлению движения фотона. Какой импульс получит пластина при попадании в нее одного фотона, если масса фотона $m_{\phi} = 5 \cdot 10^{-34}$ кг, а кинетическая энергия электрона равна $T_{\rm e} = 4.1 \cdot 10^{-19}$ Дж?
- **15.** Для сбора космического "мусора" на околоземной орбите может быть использована сеть-ловушка. С какой скоростью станет двигаться космический "мусорщик" массой $m_1 = 50$ т, оборудованный такой сетью и имеющий скорость $v_1 = 8,050$ км/с, после захвата вышедшего из строя спутника массой $m_2 = 1$ т, двигавшегося в момент захвата в том же направлении, что и "мусорщик", со скоростью $v_2 = 8,000$ км/с?
- **16.** Тело массой m = 0.5 кг движется прямолинейно так, что его скорость меняется согласно уравнению $v = A(1-e^{-Dt})$, где A = 1 м/с; D = 1 с⁻¹. Определить работу сил, действующих на тело, за первые две секунды движения.
- **17.** Тело массой m=1 кг, теплоемкость которого C=453 Дж/К, соскальзывает без начальной скорости с наклонной плоскости высотой h=1 м. Определить скорость тела в конце плоскости, если, соскользнув, оно нагрелось на $\Delta T=0.015$ К.
- **18.** Пуля массой m пробивает ящик с песком массой 4m и застревает в другом таком же ящике. Начальная скорость пули v = 800 м/с на вылете из 1-го ящика уменьшается в 2 раза. Определить: 1) начальную скорость 1-го ящика с песком; 2) отношение количеств теплоты Q_1/Q_2 , выделившихся в 1-м и 2-м ящиках.
- **19.** Потенциальная энергия двух α -частиц, находящихся на расстоянии r друг от друга, вычисляется по формуле $U = Lr^{-1}$, где $L = 9,56 \cdot 10^{-28} \; \text{H·m}^2$. До какого минимального расстояния смогут сблизиться α -частицы, начинающие двигаться из бесконечности навстречу друг другу с относительной скоростью сближения $v = 3 \cdot 10^6 \; \text{м/c}$?
- **20.** Долбежный станок, мощность двигателя которого равна $N=480~\mathrm{Bt}$, за $t=5~\mathrm{muh}$ прорезает паз глубиной $h=18~\mathrm{mm}$ и длиной $l=100~\mathrm{mm}$. Определить КПД привода станка (отношение работы резания к энергии, потребляемой станком), если:

- 1) увеличение глубины паза за один проход резца, равный l, составляет $\Delta h = 0.5$ мм; 2) усилие резания составляет $F_p = 1$ кH.
- **21.** Определить мощность гидропривода, если при давлении $P=500~{\rm k}\Pi a$ поршень, площадь которого $S=100~{\rm cm}^2$, равномерно перемещается на расстояние $l=100~{\rm mm}$ за $t=2~{\rm c}$.
- **22.** На однородный барабан массой m = 3 кг действует тормозящий момент M = 15 мН·м так, что угловая скорость ω барабана меняется со временем согласно уравнению $\omega = B + Ct$, где B = 16 с⁻¹; C = -1 с⁻². Определить: 1) диаметр барабана; 2) число оборотов, которое он сделает до полной остановки.
- **23.** Определить момент сил M, действующих на пулю калибра d=7,62 мм и массой m=10 г в стволе винтовки длиной l=0,6 м, если известно: 1) пуля представляет собой однородный цилиндр; 2) при вылете из ствола пуля успевает сделать N=4 полных
- оборота и имеет скорость v = 600 м/c; 4) пуля в стволе движется равноускоренно.
- **24.** При отказе двигателя вертолета и остановке винта, произошедшей на высоте $h_1 = 600$ м, пилот перешел в режим авторотации и винт стал раскручиваться потоком воздуха, набегающим при падении вертолета.

Определить высоту h_2 , на которой возможно возникновение подъемной силы винта, если известно:

- 1) подъемная сила возникает при скорости вращения винта n = 900 об/мин;
- 2) винт имеет четыре лопасти, каждую из которых можно считать однородным стержнем длиной l=4 м и массой $m_{\pi}=50$ кг;
 - 3) масса вертолета (без винта) $m_{\rm B} = 1$ т;
 - 4) скорость падения вертолета на высоте h_2 равна v = 20 м/с.
- **25.** Манипулятор за t=2 с равноускоренно перемещает груз массой m=5 кг по дуге, радиус которой равен R=1,5 м. Определить максимальную мощность привода манипулятора, если известно: 1) момент инерции манипулятора J=15 кг·м²; 2) угол поворота $\Delta \varphi = 90^\circ$; 3) груз можно счи-
- инерции манипулятора $J = 15 \text{ кг·м}^2$; 2) угол поворота $\Delta \varphi = 90^\circ$; 3) груз можно считать точечной массой.
- **26.** Определить расстояние между ближайшими атомами кубической кристаллической решетки железа, если на одну элементарную кубическую ячейку приходится один атом железа.
- **27.** Определить плотность и концентрацию низкотемпературной азотной плазмы, если атомарная концентрация $n_{\rm a}$ = $2\cdot 10^{18}$ м⁻³, а степень диссоциации плазмы $\alpha=80\%$.
- **28.** Определить молярную массу высокотемпературного сверхпроводника $RbCs_2C_{60}$, синтезируемого путем легирования сферических молекулярных кристаллов фуллерена C_{60} атомами щелочных металлов. Определить массу поверхностного сверхпроводящего слоя площадью 1 мм² и толщиной 3,5 нм, считая диаметр одной кристаллической сферы 0,7 нм.
- **29.** Определить концентрацию атомов, сравнить объемную плотность вещества в оболочке и в объеме одного молекулярного сферического кристалла фуллерена C_{60} . Толщина сферической оболочки фуллерена равна 0,1 нм, радиус молекулы C_{60} равен 0,357 нм.

- **30.** Определить количество вещества и поверхностную плотность атомов углерода в однослойной нанотрубке средним диаметром 20 нм и длиной 10 мкм, приняв среднее межатомное расстояние в атомном слое (графене) в 0,246 нм.
- **31.** В высокотемпературной изотермической ($T = 10^7$ K) водородной плазме Солнечной короны электронная концентрация $n_e = 10^{15}$ м⁻³. Считая, что в плазме при данных условиях ионизировано 100% и диссоциировано 50% от общего числа частиц газа, определить суммарную кинетическую энергию $E_{\rm k}$ поступательного движения всех ионов плазмы в объеме V=1 м³.
- **32.** Двигатель мотоцикла имеет рабочий цилиндр объемом 200 см³. В процессе работы двигателя в цилиндре происходит адиабатическое расширение рабочей смеси при начальном давлении $P_1 = 20$ атм. Рабочая смесь состоит из смеси воздуха и паров горючего. Степень сжатия двигателя, представляющая собой отношение максимального объема рабочей смеси к ее минимальному объему, равна $\alpha = 6$. Какую мощность развивает двигатель при частоте вращения n = 3000 об/мин? Рабочую смесь считать двухатомным идеальным газом.
- **33.** Степень сжатия бензинового двигателя (отношение максимального объема рабочей смеси к её минимальному объему) равна $\alpha = 8$. Найти отношение температуры выхлопа к температуре горения. Расши-рение считать адиабатическим, а рабочую смесь (смесь воздуха и паров бензина) считать двухатомным идеальным газом.
- **34.** Электрон, ускоренный внешним электрическим полем, влетает в воздушный конденсатор с плоскими квадратными обкладками на одинаковом удалении от обкладок. Заряд конденсатора q = 1 нКл, расстояние между обкладками d = 1 см, площадь обкладок S=100 см². Определить: 1)энергию конденсатора W; 2)минимальную ускоряющую разность потенциалов вешнего электрического поля U, необходимую для того, чтобы электрон вылетел из конденсатора.
- **35.** Катушка из медной проволоки имеет сопротивление R=10,8~Ом. Масса проволоки m=3,41~кг. Сколько метров проволоки и какого диаметра намотано на катушке?
- **36.** Определить в каких диапазонах может изменяться удельное сопротивление углеродных нанотрубок, если при измерении сопротивления нанотрубок диаметром от 1,4 до 50 нм и длиной от 1 до 5 мкм, было получено одинаковое значение, равное R=12,9 кОм. Рассчитать силу тока в нанотрубке с минимальной проводимостью, если предельная плотность тока составляет $j_{max}=10^7 \ A/cm^2$.
- **37.** Сила тока i в проводнике изменяется со временем согласно уравнению i = B + Ct, где B = 4 A, C = 2 A/c. Какое количество электричества проходит через поперечное сечение проводника за время от $t_1 = 2$ с до $t_2 = 6$ с? При какой силе постоянного тока I через поперечное сечение проводника проходит такое же количество электричества?
- **38.** Вольфрамовая нить электрической лампочки накаливания имеет в накаленном состоянии температуру $t^{\circ} = 2300$ °C. Какова плотность j и сила тока I, протекающего по нити, если её диаметр d = 20 мкм, длина l = 0.5 м, а напряжение на нити U = 200 В? Удельное сопротивление вольфрама при 0 °C равно $\rho_0 = 5.5 \cdot 10^{-8}$ Ом·м, температурный коэффициент сопротивления $\alpha = 4.6 \cdot 10^{-3}$ K⁻¹.

- **39.** Определить плотность и силу тока в плазменной дуге плазмотрона, если концентрация электронов в дуге $n_e=10^{19}~\text{M}^{-3}$, диаметр дуги 5 мм, электронная температура $T_e=10^5~\text{K}$.
- **40.** Сила тока в электродуге плазмотрона равна 200 А. Для создания эффекта сканирующего воздействия плазменной дуги на поверхность материала на дугу воздействуют поперечным магнитным полем, изменяющимся по закону $B=B_0\cdot\sin(2\pi\nu t)$, $B_0=0.02$ Тл, $\nu=50$ Гц. Определить среднее значение модуля отклоняющей силы в расчете на единицу длины дуги.
- **41.** В горизонтальной плоскости вращается прямолинейный проводник длиной l=0,5 м вокруг оси, проходящей через его конец. При этом он нормально пересекает вертикальное однородное магнитное поле напряженностью H=50 А/м ($\mu=1$). По проводнику течет ток силой I=4 А, а скорость его вращения равна n=20 об/с. Вычислить работу вращения проводника за t=2 мин.
- **42.** В плоскости, перпендикулярной магнитному полю напряженностью H = 100 А/м, вращается с частотой n = 50 об/с прямолинейный проводник длиной l = 1 м, по которому течет ток силой l = 10 А. Ось вращения проходит через один из концов проводника. Определить работу, совершаемую полем за t = 10 мин.
- **43.** Источник питания с ЭДС ε = 10 В и внутренним сопротивлением r = 1 Ом замыкается проводящим проводом длиной l = 4 м на внешнее сопротивление R = 4 Ом. Затем цепь помещается во внешнее поперечное магнитное поле с индукцией, возрастающей со скоростью $\Delta B/\Delta t$ = 3,14 Тл/с. Определить максимально возможное значение силы тока цепи в магнитном поле. Сопротивлением провода пренебречь.
- **44.** Из медного проводника длиной l=30 см и сечением S_0 =10 мм 2 изготовлен круговой контур и помещен в поперечное, убывающее по закону B= B_0 -Ct (B_0 =0,5 Тл, C=0,05 Тл/с) магнитное поле. Определить ЭДС индукции и силу тока в контуре в момент времени t=4 с. Удельное электрическое сопротивление меди ρ_0 = $1.7\cdot10^{-8}$ Ом·м
- **45.** Плоский проволочный виток площади $S=200 \text{ см}^2$ и сопротивлением R=2 Ом расположен в магнитном поле, индукция которого возрастает по закону $B = Ct^2$ ($C=10 \text{ мTл/c}^2$). Определите силу тока в контуре в момент t=2 с. Сделайте рисунок, указав направление индукционного тока.
- **46.** Генератор радиоволн состоит из конденсатора и катушки индуктивности. Площадь пластин конденсатора $S=0,025 \text{ м}^2$, расстояние между пластинами d=1 мм, диэлектрическая проницаемость диэлектрика $\varepsilon=4$. Определить длину волны λ , излучаемую генератором, если известно, что при изменении тока на 2 A за 0,5 c в катушке индуцируется э.д.с. равная 1 мB.
- **47.** Определите длину электромагнитной волны в вакууме, на которую настроен колебательный контур, если максимальный заряд конденсатора $q_m = 2 \cdot 10^{-8}$ Кл, а максимальная сила тока в контуре $I_m = 1$ А. Определите напряжение на конденсаторе в момент, когда энергия магнитного поля составляет 75% от её максимального значения. Индуктивность контура равна $L = 2 \cdot 10^{-7}$ Гн.

- **48.** С нагретой металлической поверхности площадью $S=20 \text{ cm}^2$ при температуре T=1400 K за время t=2 мин излучается энергия W=418 кДж. Определить коэффициент теплового излучения ϵ металла, считая металл серым телом.
- **49.** Нормально падающий на зачерненную поверхность площадью $S=50 \text{ см}^2$ монохроматический свет с длиной волны $\lambda=600$ нм передает ей за время t=2 мин энергию W=90 Дж. Определить: 1)число упавших фотонов; 2)световое давление на поверхность.
- **50.** Определить давление света на стенки 100-ваттной электрической лампочки, считая, что вся потребляемая ею мощность идет на излучение. Коэффициент отражения стенок лампочки 10%. Лампочку считать сферой диаметром 4 см.
- **51.** Определить угол, на который был рассеян γ квант с энергией ε_1 =0,8 МэВ при эффекте Комптона, если кинетическая энергия электрона отдачи равна E=0,2 МэВ.
- **52.** Фотон с энергией $\varepsilon_1 = 0,51$ МэВ был рассеян при эффекте Комптона на свободном электроне на угол $\mathcal{G} = 180^\circ$. Определить кинетическую энергию электрона отдачи.
- **53.** Концентрация электронов в плазменной дуге n_e = 10^{19} м⁻³. Определите длину волны де Бройля для электронов, если плотность тока в дуге составляет $2 \cdot 10^6$ А/м².
- **54.** Энергия протонов, ускоряемых в БАК (Большом Адронном Коллайдере, ЦЕРН, Женева), может достигать 7 ТэВ. Определить длину волны де Бройля λ для таких протонов.
- **55.** Рентгеновская трубка работает на напряжении U=100 кВ. Определить скорость электронов, бомбардирующих антикатод, и минимальную длину волны в спектре рентгеновского излучения.
- **56.** Полупроводник нагревается от 20 до 40 °C и его удельная электропроводность увеличивается при этом в 2,7 раза. Определить E_g ширину запрещенной зоны полупроводника и λ_{\circ} длину волны красной границы внутреннего фотоэффекта.
- 1,0 кг? Какова активность этого куска?
- **57.** Период полураспада $^{24}_{11}Na$ равен $T_{1/2}$ =15,3 ч. Больному ввели внутривенно раствор объемом $V_{\rm p}=1~{\rm cm}^3$, содержащий искусственный радиоизотоп натрия $^{24}_{11}Na$ активностью $A_{\rm o}=2$,0 кБк. Активность крови объемом $V_{\rm k}=1~{\rm cm}^3$, взятой через 5 ч, оказалась равной A=0,27 Бк. Найти полный объем крови в организме человека.

2.3.2.2. Шкалы оценивания результатов обучения на зачете

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь и владеть* заявленных компетенций проводится в режиме *«зачтено» и «не зачтено»*.

Типовые шкала и критерии оценки результатов обучения при сдаче зачёта

для компонентов знать, уметь и владеть приведены в общей части ФОС образовательной программы.

3. Критерии оценивания уровня сформированности компонентов и компетенций

3.1. Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля при зачете считается, что полученная оценка за компонент проверяемой в билете компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Типовые критерии и шкалы оценивания уровня сформированности компонентов компетенций приведены в общей части ФОС образовательной программы.

3.2.Оценка уровня сформированности компетенций

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации в виде зачета используются типовые критерии, приведенные в общей части ФОС образовательной программы.