Министерство науки и высшего образования Российской Федерации Лысьвенский филиал

федерального государственного автономного образовательного учреждения высшего образования

«Пермский национальный исследовательский политехнический университет»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине «Электроснабжение, релейная защита и автоматика»
Приложение к рабочей программе дисциплины

Направление подготовки: 13.03.02 Электроэнергетика и электротехника

Направленность (профиль) Автоматизированный электропривод и

образовательной программы: робототехнические комплексы

Квалификация выпускника: «Бакалавр»

Выпускающая кафедра: Общенаучных дисциплин

Форма обучения: Очная ,очно-заочная, заочная

Курс: 4 Семестр: 7

Трудоёмкость:

Кредитов по рабочему учебному плану: 5 ЗЕ Часов по рабочему учебному плану: 180 ч.

Форма промежуточной аттестации:

Экзамен: 7 семестр

Фонд оценочных средств для проведения промежуточной аттестации обучающихся для проведения промежуточной аттестации обучающихся по дисциплине является частью (приложением) к рабочей программе дисциплины. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине разработан в соответствии с общей частью фонда оценочных средств для проведения промежуточной аттестации основной образовательной устанавливает которая систему оценивания результатов программы, промежуточной аттестации и критерии выставления оценок. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы И процедуры текущего контроля успеваемости промежуточной аттестации обучающихся по дисциплине.

1.Перечень контролируемых результатов обучения по дисциплине, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины запланировано в течение одного семестра (7-го семестра учебного плана всех форм обучения) и разбито на 6 разделов. В каждом разделе предусмотрены аудиторные лекционные, практические занятия и лабораторные работы, а также самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируется компоненты компетенций знать, уметь, владеть, указанные в РПД, которые выступают в качестве контролируемых результатов обучения по дисциплине (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала, сдаче отчетов по лабораторным работам, практическим занятиям и экзамена. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

	Вид контроля							
Контролируемые результаты обучения по	Теку	⁄щий	Рубежный		Итоговый			
дисциплине (ЗУВы)	C	T	ОЛР/ ОПЗ	КР		Экзамен		
Усвоенн	ьье знан	ия						
3.1 Знать состав, этапы, последовательность и		T	ОПЗ	КР		TB		
особенности предпроектного обследования и								
проектирования систем релейной защиты,								
автоматики и автоматизации в соответствии с								
техническим заданием и нормативно-технической								
документацией, соблюдая различные технические,								
энергоэффективные и экологические требования								
3.2 Знать основы электроники, схемы, состав	C	T	ОПЗ	КР		TB		
оборудовании, режим работы электротехнических и								
электроэнергетических установок различного								
назначения								
Освоенн	ые умен	ния						
У.1 Уметь применять основные подходы и методики,			ОЛР	KP		П3		
программные и технические средства предпроектного			ОПЗ					
обследования и проектирования объектов релейной								
защиты, автоматики и автоматизации систем								
электроснабжения в соответствии с техническим								
заданием и нормативно-технической документацией,								
соблюдая различные технические, энергоэффективные								
и экологические требования								

У.2 Уметь проектировать схемы релейной защиты и			ОЛР	КР		ПЗ				
автоматики			ОПЗ							
Приобретенные владения										
В.1 Владеть навыками использования основных			ОЛР			КЗ				
программных и технических средств предпроектного			ОПЗ							
обследования и проектирования объектов релейной										
защиты, автоматики и автоматизации систем										
электроснабжения в соответствии с техническим										
заданием и нормативно-технической документацией,										
соблюдая различные технические, энергоэффективные										
и экологические требования										
В.2 Владеть навыками расчета схем и режимов работы			ОЛР			К3				
устройств релейной защиты и автоматики			ОПЗ							

C — собеседование по теме; T — тестирование; K3 — кейс-задача (индивидуальное задание); OJP — отчет по лабораторной работе; OII3 — отчет по практическому занятию; KP — контрольная работа; TB — теоретический вопрос; II3 — практическое задание; K3 — комплексное задание экзамена.

Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в форме экзамена, проводимая с учетом результатов текущего и рубежного контроля.

2.Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной эффективности учебного процесса, управление процессом формирования заданных компетенций обучаемых, повышение мотивации к учебе и предусматривает оценивание хода освоения дисциплины. В соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования – программам бакалавриата в ЛФ ПНИПУ предусмотрены следующие виды и периодичность текущего контроля успеваемости обучающихся:

- входной контроль, проверка исходного уровня подготовленности обучаемого и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента «знать» заданных компетенций) на каждом групповом занятии и контроль посещаемости лекционных занятий;
- промежуточный и рубежный контроль освоения обучаемыми отдельных компонентов «знать», «уметь» заданных компетенций путем компьютерного или бланочного тестирования, контрольных опросов, контрольных работ (индивидуальных домашних заданий), защиты отчетов по лабораторным работам, рефератов, эссе и т.д.

Рубежный контроль по дисциплине проводится на следующей неделе после прохождения модуля дисциплины, а промежуточный — во время каждого контрольного мероприятия внутри модулей дисциплины;

- межсессионная аттестация, единовременное подведение итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы;

- контроль остаточных знаний.

2.1. Текущий контроль усвоения материала

Текущий контроль усвоения материала в форме собеседования или тестирования студентов проводится по каждому модулю. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

Типовые задания тестирования:

Вариант 1

Модуль 1. Режимы работы системы электроснабжения

- 1. От каких видов аварийных режимов защищает релейная защита ...
- а) всех видов коротких замыканий
- б) замыканий на землю
- в) грозовых перенапряжений

Модуль 2. Токовые защиты систем электроснабжения

- 2. Чем обеспечивается селективность максимальной токовой защиты ...
- а) выбором тока срабатывания реле
- б) выбором уставки по времени
- в) выбором места установки защиты
- 3. Что обеспечивает направленная токовая защита в линиях с двусторонним питанием
 - а) распределение перетоков мощности
 - б) защиту от больших перетоков по сети
- в) селективность действия максимальных токовых защит в линиях с двусторонним питанием

Модуль 3. Защита элементов сетей электроснабжения

- 4. Продольная дифференциальная защита применяется для элементов ...
- а) ЛЭП, трансформаторов, мощных высоковольтных двигателей и генераторов
- б) только ЛЭП
- в) только трансформаторов
- г) только высоковольтных двигателей и генераторов

Модуль 4. Автоматизация управления систем электроснабжения

- 5. АПВ это ...
- а) автоматическая проверка выключателя
- б) автоматическое повторное выключение ЛЭП
- в) автоматическое повторное включение ЛЭП
- 6. Для каких элементов электрической системы применяется АПВ (выберите несколько вариантов):
 - а) электродвигателей после отключения их собственной защитой

- б) трансформаторов после отключения их собственной защитой
- в) воздушных ЛЭП после отключения их собственной защитой
- г) воздушных ЛЭП с кабельными вставками после отключения их собственной защитой
 - д) генераторов после отключения их собственной защитой

Модуль 5. Противоаварийная автоматика подстанций

- 7. Автоматическая частотная разгрузка
- а) даёт команду на повышение частоты источников системы
- б) отключает часть не ответственных потребителей от шин контролируемой подстанции для восстановления баланса активной нагрузки и активной мощности генераторов системы
 - в) включает дополнительную нагрузку при превышении частоты.
 - 8. Частотное АПВ ...
 - а) сигнализация дежурному персоналу о восстановлении частоты.
- б) автоматическое повторное включение фидеров, отключённых при работе АЧР
- в) повторное включение фидеров, отключённых при работе АЧР по требованию потребителей
- г) автоматическое повторное включение фидеров, отключённых при работе АЧР после восстановления частоты в системе.

Модуль 6. Телемеханизация и диспетчерское управление системами электроснабжения

- 9. Автоматический ввод резерва
- а) автоматическое включение дополнительных генераторов в системе
- б) автоматическое переключение питания секции (сборки) на дополнительный источник питания заранее определённый, как резервный
- в) автоматическое включение дополнительного источника питания, заранее определённого как резервный
- 10. Автоматическое регулирование коэффициента трансформации понижающего трансформатора ...
- а) регулирование дежурным персоналом числа витков вторичной обмотки понижающего трансформатора
- б) изменение степени магнитного насыщения сердечника понижающего трансформатора
- в) автоматическое регулирование напряжения на низкой стороне (\pm 5%) в соответствии с заданным значением, .для трансформаторов, оборудованных РПН Правильные ответы:
 - 1. а,б
 - 2. б
 - 3. в
 - *4. a*
 - 5. B

- 6. *B,2*
- 7. 6
- 8. г
- 9. б
- 10. в

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений (табл. 1.1) проводится в форме защиты лабораторных работ, практических занятий и рубежных контрольных работ (после изучения каждого модуля учебной дисциплины).

2.2.1. Защита лабораторных работ

Всего запланировано 10 лабораторных работ. Типовые темы лабораторных работ приведены в РПД.

Защита лабораторной работы проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.2.2. Защита практических занятий

Всего запланировано 8 практических занятий. Типовые темы практических занятий приведены в РПД.

Защита практических занятий проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.2.3. Рубежная контрольная работа

Согласно РПД запланировано 1 рубежная контрольные работа (КР) после освоения студентами разделов дисциплины.

Типовое задание КР:

- 1. Расчёт токов короткого замыкания в предложенной схеме электроснабжения, содержащей высоковольтные ЛЭП, понижающие трансформаторы, секции распределительных шин подстанции и присоединённые фидера различных потребителей, конденсаторных батарей.
- 2. Расчёт для отдедьных элементов системы (ЛЭП, трансформаторов, отдельных потребителей) токов срабатывания МТЗ и токовой отсечки, выбор уставок срабатывания реле и выдержек времени, проверка на чувствительность и селективность.

Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.3. Промежуточная аттестация (итоговый контроль)

Допуск к промежуточной аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются успешная сдача всех лабораторных работ и положительная интегральная оценка по результатам текущего и рубежного контроля.

Промежуточная аттестация, согласно РПД, проводится в виде экзамена по дисциплине устно по билетам. Билет содержит теоретические вопросы (ТВ) для проверки усвоенных знаний, практические задания (ПЗ) для проверки освоенных умений и комплексные задания (КЗ) для контроля уровня приобретенных владений

всех заявленных компетенций.

Билет формируется таким образом, чтобы в него попали вопросы и практические задания, контролирующие уровень сформированности *всех* заявленных компетенций. Форма билета представлена в общей части ФОС образовательной программы.

2.3.1. Вопросы и задания для экзамена по дисциплине Вопросы для контроля усвоенных знаний и умений:

- 1. Основные требования, предъявляемые к релейной защите. Классификация реле защиты по принципу действия и по назначению.
- 2. Конструкции и принцип действия электромагнитных реле тока, напряжения, времени, промежуточных и указательных.
- 3. Конструкция и принцип действия индукционного реле тока. Область применения.
- 4. Максимальная токовая защита линии с независимой выдержкой времени. Назначение, схема, принцип действия, расчет тока срабатывания.
- 5. Защита линий отсечками по току и напряжению. Назначение, схема, принцип действия, расчет уставок срабатывания реле.
- 6. Максимальная токовая защита линии с блокировкой по напряжению. Назначение, схема, принцип действия, расчет тока срабатывания реле.
- 7. Направленная максимальная токовая защита линий. Назначение, схема, принцип действия.
- 8. Дистанционная защита линий. Область применения, схема, принцип действия защиты.
- 9. Продольная дистанционная защита линий. Принцип действия, достоинства, недостатки.
- 10. Высокочастотная дифференциальная защита линий. Принцип действия, достоинства, недостатки.
- 11. Поперечная дифференциальная защита линий. Область применения, схема, принцип действия защиты, достоинства, недостатки.
- 12. Конструкция, принцип действия реле сопротивления КРС-2. Характеристика реле.
- 13. Области автоматизированного управления состояниями схем питания потребителей и электроприемников
- 14 Основные принципы регулирования частоты в электроэнергетических системах.

Возможные последствия возникновения дефицита активной мощности в системе. «Лавина» частоты.

- 15. Принципы организации автоматической частотной разгрузки (АЧР). Быстродействующая и медленнодействующая категории АЧР. АПВ после АЧР.
- 16. Автоматическое повторное включение Возможности ускорения действия защиты линий при наличии АПВ. Требования к устройствам АПВ.
- 17. Механическое и электрическое АПВ. АПВ трансформатора. АПВ линий с односторонним питанием.
- 18. Автоматический ввод резерва Требования к устройствам АВР; одностороннее и двухстороннее АВР.

- 19. ABP трансформатора. ABP линии. Противоаварийная автоматика силовых трансформаторов Автоматическое отключение трансформатора на подстанции, выполненной по упрощенной схеме.
- 20. Автоматическая аварийная разгрузка трансформатора. Автоматическое управление режимами трансформатора. Автоматическое регулирование Коэффициента Трансформации понижающего трансформатора.
- 21. Противоаварийная автоматика синхронных Машин. Автоматическое регулирование возбуждения синхронных машин, регулирование возбуждения по возмущающемуся воздействию и по отклонению напряжения от установленного значения.
 - 22. Автоматическое управление конденсаторными батареями.
- 23. Автоматизация диспетчерского Управления системами электроснабжения Основные сведения о телемеханизации и диспетчерском управлении.
- 24. Телемеханизация как основа автоматизации диспетчерского управления системой электроснабжения. Понятие сообщения, сигнала, помехи, канала связи, информации. Количественная мера информации. Виды Телемеханической информации.
- 25. Передача данных в системах электроснабжения Несущий процесс, виды модуляции, кодо-импульсная модуляция. Помехозащитные коды. Принципы построения и структура кодо-импульсного устройства телемеханики. Примеры современных кодо-импульсных устройств телемеханики ближнего действия.

Типовые комплексные задания для контроля приобретенных владений:

- 1. Задача № 1 Начертить схему максимальной токовой защиты (МТЗ) с независимой выдержкой времени питающей линии потребителя в сочетании с токовой отсечкой (ТО). Вычислить ток срабатывания $I_{\text{с.з.}}$ максимальной токовой защиты линии, ток уставки срабатывания реле $I_{\text{у.ср.}}$ Сделать заключение о чувствительности защиты. Вычислить ток срабатывания $I_{\text{с.з.}}$ токовой отсечки линии, ток уставки срабатывания реле. Сделать заключение о чувствительности защиты. Исходные данные для вычислений приведены в таблице 1 (приложение A).
- 2. Задача № 2 Начертить схему максимальной токовой защиты (МТЗ) токовой отсечки (ТО) двухобмоточного понижающего трансформатора. Вычислить ток срабатывания максимальной токовой защиты $I_{\text{с.з.}}$, ток уставки срабатывания реле $I_{\text{у.ср.}}$ Сделать заключение чувствительности МТЗ. Вычислить ток срабатывания токовой отсечки $I_{\text{с.з.}}$, ток уставки срабатывания реле $I_{\text{у.ср.}}$ Сделать заключение о чувствительности ТО. Тип применяемых в защите токовых реле РТ-40. Исходные данные для вычислений приведены в таблице 2 (приложение Б).

2.3.2. Шкалы оценивания результатов обучения на экзамене

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь*, *владеть* заявленных компетенций проводится по 4-х балльной шкале оценивания путем выборочного контроля во время экзамена.

Типовые шкала и критерии оценки результатов обучения при сдаче экзамена

для компонентов *знать*, *уметь и владеть* приведены в общей части ФОС образовательной программы.

3. Критерии оценивания уровня сформированности компонентов и компетенций

3.1. Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля при экзамене считается, что полученная оценка за компонент проверяемой в билете компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Типовые критерии и шкалы оценивания уровня сформированности компонентов компетенций приведены в общей части ФОС образовательной программы.

3.2. Оценка уровня сформированности компетенций

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации в виде экзамена используются типовые критерии, приведенные в общей части ФОС образовательной программы.

Приложение А

Таблица 1

		И	сходные	е данные						
Исходные данные				Номера	а вариант	ОВ				
	1; 11	2; 12	3; 13	4; 14	5; 15	6; 16	7; 17	8; 18	9; 19	10; 20
<i>I</i> раб.max ^{, A}	280	470	86	340	120	140	250	320	100	180
Кезп	2,8	2	2,5	2,8	2,1	2,4	2,6	2,5	2	2,4
K_I	80	120	20	120	30	40	70	120	30	45
<i>I</i> k.min ^{,kA}	2,0	3,3	1,05	3,0	0,85	0,85	2,0	2,8	0,8	0,85
I k.max ^{, kA}	2,9	4,5	2,1	3,8	1,3	1,5	2,7	3,2	1,2	1,8
I'k.min	6,4	9,9	5,2	8,0	2,95	3,05	6.2	8,0	3,1	2,96
Схема соединения ТТ и реле защиты	неполна	я звезда	полная	звезда	да неполная звезда		полная	звезда	неполная з	ввезда

Приложение Б

Таблица 2

Исходные данные для задачи № 2

Исходные данные	Номера вариантов									
	1; 11	2; 12	3; 13	4; 14	5; 15	6; 16	7; 17	8; 18	9; 19	10; 20
^S ном.тр. ^{кВ·А}	630	4000	400	2500	1600	1600	2500	400	4000	630
$U_{ m 1_{HOM}}$, к $ m B$	35	35	10	110	35	10	35	10	110	35
^К тр	8	6	2,5	11	3,5	4	8	16	10	3,5
K_1	6	20	15	20	15	14	22	15	20	8
<i>I</i> к.min ^{2, кA}	9,0	4,6	3,9	2,7	2,1	2,5	4	3,5	2,6	8,5
I k.max, ^{кA}	12,1	6,0	4,5	3,8	2,2	4,2	6	4.7	3,7	9,7
1к.min1, кА	0,9	2,5	0,6	1,2	1,9	0,8	2,5	0,8	1,3	0,8
Ксзп	2,0	2,6	2,5	2,2	3,0	2,0	2,2	2,5	2,0	2,3
Схема соединения ТТ и реле защиты	непол- ная звезда с двумя реле	полная звезда с тремя реле	неполная звезда с тремя реле	треу- голь- ник с термя реле	треу- голь- ник с двумя реле	непол- ная звезда с двумя реле	пол- ная звезда с тремя реле	не- пол- ная звез- да с тремя реле	тре- уголь- ник с тремя реле	тре- уголь- ник с тремя реле