Министерство науки и высшего образования Российской Федерации Лысьвенский филиал

федерального государственного автономного образовательного учреждения высшего образования

«Пермский национальный исследовательский политехнический университет»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине «Электрические машины»

Приложение к рабочей программе дисциплины

Направление подготовки 13.03.02 Электроэнергетика и электротехника

Направленность (профиль) Автоматизированный электропривод и

образовательной программы робототехнические комплексы

Квалификация (степень)

выпускника

Бакалавр

Выпускающая кафедра Общенаучных дисциплин

Формы обучения очная, очно-заочная, заочная

Курс: 2 (3) Семестр:4 (6)

Трудоёмкость:

Кредитов по рабочему учебному плану: 6 3E Часов по рабочему учебному плану: 216 ч

Форма промежуточной аттестации:

Экзамен: 4 (6) семестр Курсовой проект: 4 (6) семестр

Фонд оценочных средств для проведения промежуточной аттестации обучающихся для проведения промежуточной аттестации обучающихся по дисциплине является частью (приложением) к рабочей программе дисциплины. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине разработан в соответствии с общей частью фонда оценочных средств для проведения промежуточной аттестации основной образовательной программы, которая устанавливает систему оценивания результатов промежуточной аттестации и критерии выставления оценок. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы И процедуры текущего контроля успеваемости промежуточной аттестации обучающихся по дисциплине.

1. Перечень контролируемых результатов обучения по дисциплине, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины запланировано в течение одного семестра (4-го семестра учебного плана очной формы обучения, 6-го семестра учебного плана очно-заочной и заочной форм обучения). В каждом модуле предусмотрены аудиторные лекционные, практические занятия и лабораторные работы, а также самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируется компоненты компетенций знать, уметь, владеть, указанные в РПД, которые выступают в качестве контролируемых результатов обучения по дисциплине (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала, сдаче отчетов по лабораторным работам и экзамена. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Контролируемые результаты обучения по дисциплине

Variana zana zana zana zana zana zana zana	Вид контроля						
Контролируемые результаты освоения дисциплины (ЗУВы)	Текущий	Рубежный			Итоговый		
(ЗУ ВЫ)	TO	T	ОЛР	ОПЗ	Экзамен/КП		
Усвоенн	ые знания						
3.1 Знать принцип действия современных типов	TO1						
электромеханических устройств и трансформаторов,	TO3				TB/3		
особенности их конструкции, основные уравнения и	TO6				1 D/3		
схемы замещения;	TO14						
3.2 Знать основные законы, теоретические положения и	TO2				TB/3		
формулы, которые описывают электромеханические и	TO5						
электромагнитные процессы в электрических машинах;	TO9						
	TO15						
3.3 Знать основные методы испытаний электрических	TO3				TB/3		
машин;	TO10		ОЛР				
	TO13						
3.4 Знать устройство, основные характеристики и	TO1-				TB/3		
параметры электрических машин и трансформаторов для	TO12						
осуществления их сравнительного анализа и выбора;	TO18						
3.5 Знать основные методы расчета характеристик и	TO2				TB/3		
проектирования электрических машин;	TO9						
	TO18						

Освоенные умения							
У.1 Уметь использовать на практике методы и критерии							
выбора электрических машин и трансформаторов для			*/3				
электромеханических систем;							
У.2 Уметь использовать на практике методы стандартных				*/3			
испытаний электрических машин;	ОЛР				*/3		
У.3 Уметь подбирать электрические приборы и собирать	пектрические приборы и собирать ОЛР						
схемы для выполнения экспериментальных исследований	Oili		*/3				
электрических машин;							
У.4 Уметь выполнять расчеты и проектирование							
электромеханических устройств и систем в соответствии с		ОПЗ	*/3				
техническим заданиемс использованием стандартных				0115	./3		
методик и программных средств							
Приобретенные владения							
В.1 Владеть навыками использования методов и способов							
математического анализа и моделирования,			ОЛР	ОПЗ			
теоретического и экспериментального исследования для					*/3		
определения параметров и характеристик электрических							
машин;							
В.2 Владеть навыками использования справочной	ОЛР						
литературы и оформления технической документации при					*/3		
расчетах и проектировании электрических машин;							
В.3 Владеть навыками осуществления выбора							
электрических машин и трансформаторов дляих работы в					*/3		
составе электромеханических систем.							

Примечание: TO — теоретический опрос; KP — контрольная работа; TB — теоретический вопрос; $O\Pi P$ — отчет по лабораторной работе, $O\Pi 3$ — отчет по практическому занятию; 3 — защита курсового проекта

Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в форме защиты курсового проекта и экзамена, проводимая с учетом результатов текущего и рубежного контроля.

2. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной эффективности учебного процесса, управление процессом формирования компетенций обучаемых, повышение мотивации учебе предусматривает оценивание хода освоения дисциплины. В соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования программам бакалавриата, специалитета и магистратуры ПНИПУ предусмотрены следующие виды периодичность текущего И контроля успеваемости обучающихся:

- входной контроль, проверка исходного уровня подготовленности обучаемого и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента «знать» заданных компетенций) на каждом групповом занятии и контроль посещаемости лекционных занятий;
- промежуточный и рубежный контроль освоения обучаемыми отдельных компонентов «знать», «уметь» заданных компетенций путем компьютерного или бланочного тестирования, контрольных опросов, контрольных работ

^{* -} по итогам текущего и промежуточного контроля.

(индивидуальных домашних заданий), защиты отчетов по лабораторным работам, рефератов, эссе и т.д.

Рубежный контроль по дисциплине проводится на следующей неделе после прохождения модуля дисциплины, а промежуточный — во время каждого контрольного мероприятия внутри модулей дисциплины;

- межсессионная аттестация, единовременное подведение итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы;
 - контроль остаточных знаний.

2.1. Текущий контроль

Текущий контроль усвоения материала в форме собеседования или выборочного теоретического опроса студентов проводится по каждой теме. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений (табл. 1.1) проводится в форме защиты лабораторных работ, практических занятий и рубежных контрольных работ (после изучения каждого модуля учебной дисциплины) и рубежного тестирования.

2.2.1. Защита лабораторных работ

Всего запланировано 9 лабораторных работ, Типовые темы лабораторных работ приведены в РПД.

Защита лабораторной работы проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.2.2. Защита практических занятий

Всего запланировано 4 практических занятия. Типовые темы практических занятий приведены в РПД.

Защита практических занятий проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.2.3. Рубежная контрольная работа

Запланированы рубежные контрольные работы (КР) после освоения студентами учебных модулей дисциплины.

Типовые задания к контрольным работам:

- 1.1 Схема замещения трансформатора при холостом ходе и коротком замыкании и определение параметров трансформатора;
- 1.2 Построить векторную диаграмму и схему замещения асинхронного двигателя в различных режимах работы;
- 1.3 Построить энергетическую диаграмму асинхронного двигателя и перечислить основные виды потерь и способы их определения.
 - 2.1 Пояснить устройство и принцип действия синхронной машины;
- 2.2 Построить векторную диаграмму явнополюсного синхронного генератора в нормальном режиме работы.

- 3.1 Перечислить и пояснить способы регулирование частоты вращения двигателей постоянного тока;
- 3.2 Построить энергетическую диаграмму генератора постоянного тока и перечислить основные виды потерь и способы их определения;

Типовые шкала и критерии оценки результатов контрольной работы приведены в общей части ФОС программы бакалавриата.

2.2.4. Рубежное тестирование

Запланировано рубежное тестирование (Т) после освоения студентами учебных разделов.

Типовые задания рубежного тестирования приведены в Приложении А.

Типовые шкала и критерии оценки результатов рубежного тестирования приведены в общей части ФОС образовательной программы.

2.3. Промежуточная аттестация (итоговый контроль)

Допуск к промежуточной аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются успешная сдача всех лабораторных работ и положительная интегральная оценка по результатам текущего и рубежного контроля.

Промежуточная аттестация, согласно РПД, проводится в виде экзамена по дисциплине устно по билетам. Билет содержит теоретические вопросы (ТВ) для проверки усвоенных знаний, практические задания (ПЗ) для проверки освоенных умений и комплексные задания (КЗ) для контроля уровня приобретенных владений всех заявленных компетенций.

Билет формируется таким образом, чтобы в него попали вопросы и практические задания, контролирующие уровень сформированности*всех* заявленных компетенций. Форма билета представлена в общей части ФОС образовательной программы.

2.3.1. Типовые вопросы и задания для экзамена по дисциплине Типовые вопросы для контроля усвоенных знаний:

- 1. Объясните устройство и принцип действия трансформатора.
- 2. В чём сходство и в чём различие между АД и трансформатором?
- 3. Почему с увеличением механической нагрузки на валу АД возрастает потребляемая двигателем из сети мощность?
- 4. Что называется напряжением короткого замыкания и потерями короткого замыкания трансформатора? В каких единицах они выражаются?
- 5. Что такое коэффициент трансформации и как его определить опытным путем?
- 6. Условия включения трансформаторов на параллельную работу: анализ работы.
- 7. Что называется током холостого хода и потерями холостого хода трансформатора? В каких единицах они выражаются?
- 8. Объясните устройство и принцип работы трехфазного асинхронного двигателя с короткозамкнутым ротором.

- 9. Перечислите виды потерь мощности в асинхронном двигателе. От чего эти потери зависят?
- 10. Какая мощность в асинхронном двигателе называется электромагнитной?
- 11. Что такое скольжение? В каком диапазоне оно изменяется при работе асинхронной машины?
- 12. Как определяется коэффициент мощности? Почему при нагрузке двигателя меньше номинальной, его соѕф имеет низкие значения?
- 13. Способы пуска асинхронных двигателей (с фазным и короткозамкнутым ротором); кратности пусковых тока и момента двигателей нормального исполнения.
- 14. Что такое перегрузочная способность асинхронного двигателя и какова её зависимость от напряжения питания двигателя?
 - 15. Какие характеристики асинхронного двигателя называют рабочими?
- 16. К чему приведёт увеличение активного сопротивления в цепи ротора двигателя с фазным ротором.
- 17. К чему приведёт уменьшение подводимого к статору напряжения (показать на кривой момента M = f(s)).
 - 18. Запишите и поясните формулу максимального момента (Mкр).
- 19. Для чего используется асинхронный двигатель с глубоким пазом на роторе, поясните физический смысл.
- 20. Запишите расчётную формулу момента асинхронной машины, в чём её физический смысл.
- 21. Покажите схемы замещения асинхронного двигателя и область их применения.
- 22. Запишите уравнение частоты и индуктивного сопротивления АД для вращающегося ротора.
- 23. Устройство и принцип работы машины постоянного тока (режим двигателя, режим генератора, принцип обратимости, устройство подробно).
 - 24. Запишите основные уравнения ЭДС, электромагнитного момента.
- 25. Запишите уравнения равновесного состояния моментов и ЭДС для генератора и двигателя.
- 26. Какие потери в двигателе относятся к постоянным, а какие к переменным потерям?
- 27. Способы регулирования частоты вращения двигателей постоянного тока.
- 28. Как влияет добавочное сопротивление в цепи якоря ДПТ (или ротора АД) на жесткость механической характеристики?
- 29. Почему нужно при пуске ограничивать ток якоря в ДПТ (двигатели постоянного тока)?
- 30. Назовите способы регулирования скорости вращения двигателя постоянного тока параллельного возбуждения и кратко их охарактеризуйте.
- 31. Режимы работы синхронной машины (компенсатор, двигатель, генератор, энергетические диаграммы).
 - 32. Пуск синхронных двигателей (особенности, способы пуска).

Типовые вопросы и практические задания для контроля освоенных умений:

- 1. Как изменится вторичное напряжение автотрансформатора, если w1 уменьшить на 10 %, а w2 увеличить на 10 %, уменьшится на 20 %?
- 2. Каким образом асинхронный двигатель можно перевести в режим динамического торможения?
- 3. Асинхронный двигатель предназначен для работы при напряжении сети 220/380 В. Как следует соединить обмотку статора этого двигателя при напряжении сети 220 В и как при 380 В?
 - 4. Почему график I1 = f(P2) не выходит из начала координат?
- 5. Двигатель работает поочередно в двух режимах, причем во втором режиме электромагнитная мощность больше по сравнению с первым режимом в 1,5 раза, а потери мощности в роторе в 1,8 раза. Как соотносятся скольжения в обоих режимах? (a) s1 = s2; 6s1 > s2; s1 < s2)

Типовые комплексные задания для контроля приобретенных владений:

- 1. Мощность, потребляемая трансформатором из сети при активной нагрузке $P_1 = 500$ Вт. Напряжение сети 100 В. Коэффициент трансформации равен 10. Определить ток нагрузки.
- 2. В опыте короткого замыкания трансформатора измерены: потребляемая мощность 50 Вт, ток в первичной цепи 10 А и во вторичной цепи 2,5 А. В опыте холостого хода того же трансформатора измерены потребляемая мощность 15 Вт, напряжение питания 100 В. Определить КПД трансформатора при номинальной нагрузке, коэффициент трансформации.
- 3. Вторичная обмотка трансформатора замкнута накоротко. Токи в обмотках равны номинальным значениям $I_{1K} = 2,5$ A, $I_{2K} = 10$ A. Напряжение на входе составляет 10 В. Данное напряжение составляет 5% от номинального значения. Определить номинальную мощность трансформатора, напряжение на выходе при номинальной нагрузке.
- 4. Определить мощность $P_{2\text{ном}}$, отдаваемую трансформатором потребителю электроэнергии, суммарные потери мощности $\Sigma P_{\text{ном}}$, электрические $P_{91\text{ном}}$, $P_{92\text{ном}}$ и магнитные потери в трансформаторе при номинальном режиме работы. Номинальное линейное напряжение его вторичной обмотки $U_{2\text{ном}}=400\,$ В, линейный ток первичной обмотки $I_{1\text{ном}}=0.2\,$ А, коэффициент мощности $\cos\phi_{2\text{ном}}=1$, КПД трансформатора $\eta_{\text{ном}}=0.95$, активные сопротивления первичной обмотки $R_1=200\,$ Ом, вторичной $R_2=0.1\,$ Ом. Потоком рассеяния и током холостого хода пренебречь.
- 5. Определить коэффициент трансформации k и действующие значения ЭДС E_1 и E_2 обмоток однофазного трансформатора при частоте f=100 Гц, если площадь поперечного сечения магнитопровода $S_{\rm c}=4$ см². Амплитудное значение магнитной индукции $B_{\rm m}=1$ Тл, число витков первичной и вторичной обмоток трансформатора: $w_1=220$ и $w_2=1500$.
- 6. Обмотки трехфазного трансформатора типа ТМ-100/6 с номинальной мощностью $S_{1\text{ном}} = 100$ кВА включены по схеме «звезда».

- 7. Определить коэффициент трансформации k и КПД $\eta_{\text{ном}}$ трансформатора при номинальной нагрузке ($cos\phi_2=0.8$). Номинальные линейные напряжения $U_{\text{1ном}}=6$ кВ, $U_{\text{2ном}}=525$ В, линейный ток первичной обмотки $I_{\text{1ном}}=10$ А, потери холостого хода при номинальном напряжении $P_0=600$ Вт, потери короткого замыкания при номинальном токе $P_{\text{к}}=2400$ Вт.
- 8. Четырехполюсный трехфазный асинхронный двигатель питается от сети промышленной частоты. При вращающем моменте 67 Н·м скольжение двигателя 5%. При этом суммарная мощность потерь 1,5 кВт. Определить КПД двигателя при указанном вращающем моменте на валу.
- 9. Шестиполюсная асинхронная машина питается от трехфазной сети с частотой 60 Гц. Скольжение машины равно 0,025. Найти угловую скорость и частоту вращения поля и ротора. Как изменятся эти величины при частоте 400 Гц? В каком режиме работает асинхронная машина?
- 10. При номинальном режиме работы трехфазного асинхронного двигателя АПД-136/4 с короткозамкнутым ротором, обмотки которого соединены звездой, определить номинальные значения: полезной мощности на валу $P_{2\text{ном}}$, КПД $\eta_{\text{ном}}$ и коэффициент мощности $\cos\varphi_{1\text{ном}}$. Подводимая к двигателю мощность $P_{1\text{ном}}=10,4$ кВт, номинальный линейный ток $I_{1\text{ном}}=21$ А, номинальное линейное напряжение $U_{1\text{ном}}=380$ В, номинальная скорость вращения $\omega_{2\text{ном}}=149,1$ с⁻¹, механические потери мощности $P_{\text{мех}}=340$ Вт, суммарные магнитные потери мощности $P_{\text{мех}}=589,5$ Вт, активное сопротивление фазы обмотки статора $R_1=0,734$ Ом, частота питающего напряжения $f_1=50$ Гц. При расчётах учесть добавочные потери.
- 11. Определить пусковой $M_{\rm пуск}$ и максимальный моменты $M_{\rm max}$, а также пусковой ток $I_{\rm пуск}$ асинхронного двигателя при напряжении на его зажимах, пониженном на 20% от номинального напряжения $U_{\rm 1 hom}=380$ В. Подведенная к двигателю мощность $P_{\rm 1 hom}=18,4$ кВт, номинальная частота вращения $n_{\rm 2 hom}=2935$ об/мин, номинальные значения: КПД $\eta=0,89$ и коэффициент мощности $\cos\varphi_{\rm 1 hom}=0,91$, кратность пускового $M_{\rm пуск}/M_{\rm hom}=1,5$ и максимального моментов $M_{\rm max}/M_{\rm hom}=2,3$, кратность пускового тока при номинальном напряжении $I_{\rm 1 nyck}/I_{\rm 1 hom}=7,6$.
- 12. Электрические потери в обмотке статора асинхронного двигателя $P_{91} = 500~{\rm Bt.}$ Подведенная к двигателю мощность $P_{1{\rm HoM}} = 13,8~{\rm kBt.}$ Определить электромагнитную мощность, мощность на валу двигателя, электрические потери в обмотке ротора, механические и добавочные потери, если четырехполюсный двигатель вращается с частотой $n = 1450~{\rm ob/Muh.}$, а КПД машины $\eta = 87\%$. Частота сети 50 Гц. Магнитные потери в магнитопроводе статора принять равными 2/3 от электрических потерь в обмотке статора.
- 13. Трехфазный асинхронный двигатель работает от сети напряжением 660 В при соединении обмоток статора звездой. При номинальной нагрузке он потребляет из сети мощность $P_1=16,7$ кВт при коэффициенте мощности $\cos\varphi_1=0,87$. Частота вращения $n_{2\text{ном}}=1470$ об/мин. Требуется определить КПД двигателя, если магнитные потери $P_{\text{м}}=265$ Вт, а механические потери $P_{\text{мех}}=123$ Вт. Активное сопротивление фазы обмотки статора R_1 $_{20}=0,8$ Ом, а класс нагревостойкости изоляции двигателя F (рабочая температура двигателя $\Theta_{\text{раб}}=115^{\circ}\text{C}$).

- 14. Двигатель постоянного тока питается от сети напряжением $110~{\rm B}$ развивает на валу мощность $5~{\rm kBT}$ при частоте вращения $2000~{\rm of/muh}$. Номинальный ток $I_{\rm 1hom}=48~{\rm A}$. Определить вращающий момент на валу двигателя, КПД.
- 15. Определить начальную кратность пускового тока ДПТ НВ с $P_{\rm H}=4.5~{\rm kBT}$ при прямом включении в сеть $U=220~{\rm B}.$ Сопротивление якоря $R_{\rm g}=0.25~{\rm Om},~\eta=0.85.$ Вычислить сопротивление пускового реостата $R_{\rm H}$, необходимое для снижения пускового тока до $2.5~I_{\rm H}.$
- 16. Электродвигатель постоянного тока параллельного возбуждения имеет номинальные данные: питающее напряжение $U_{\text{ном}}=220\,$ В, противо-ЭДС, наводимая в обмотке якоря при номинальном режиме работы $E_{\text{я ном}}=202\,$ В, частота вращения $n_{\text{ном}}=1000\,$ об/мин, КПД $\eta_{\text{ном}}=84\,$ %, ток, потребляемый из сети, $I_{\text{ном}}=30\,$ А, сопротивление обмотки возбуждения $R_{\text{в}}=160\,$ Ом. Определить номинальные значения: момента на валу двигателя $M_{\text{в ном}}$, тока якоря $I_{\text{я ном}}$, тока возбуждения $I_{\text{в ном}}$ и сопротивление обмотки якоря $R_{\text{я}}$.
- 17. Генератор постоянного тока с параллельным возбуждением работает в режиме холостого хода. Сопротивление обмотки якоря 0,2 Ом, сопротивление обмотки возбуждения 120 Ом. Определить ЭДС генератора, если ток возбуждения составляет 2 А.
- 18. Трехфазный синхронный двигатель включен в сеть с напряжением 660 В. Мощность на валу 25 кВт, линейный ток, потребляемый из сети 60 А, КПД 0,9. Определить реактивную мощность, потребляемую двигателем из сети.
- 19. Найти электрические потери в статоре и электромагнитную мощность синхронного генератора, который при симметричной нагрузке отдает полезную мощность $P_1 = 250$ кВт, фазный ток составляет $I_{\phi} = 300$ A, активное сопротивление на фазу: R = 0,12 Ом.
- 20. Неявнополюсный синхронный двигатель характеризуется следующими данными: Номинальная мощность $P_{2H} = 100$ кВт; номинальное напряжение $U_{H} = 380$ В; коэффициент мощности $\cos \varphi_{H} = 0.8$ (опережающий); КПД $\eta_{H} = 0.91$ Обмотка статора соединена треугольником. Определить ток, потребляемый обмоткой двигателя из сети в номинальном режиме.

Полный перечень теоретических вопросов и практических заданий в форме утвержденного комплекта экзаменационных билетов хранится на выпускающей кафедре.

2.3.2. Шкалы оценивания результатов обучения на экзамене

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь*, *владеть* заявленных компетенций проводится по 4-х балльной шкале оценивания путем выборочного контроля во время экзамена.

Типовые шкала и критерии оценки результатов обучения при сдаче экзамена для компонентов *знать*, *уметь и владеть* приведены в общей части ФОС образовательной программы.

2.3.2 Защита курсового проекта

Тематика примерных курсовых проектов.

- Расчет рабочих и пусковых характеристик асинхронного двигателя с фазным ротором.

Типовые шкала и критерии оценки результатов защиты курсового проекта приведены в общей части ФОС программы бакалавриата.

3. Критерии оценивания уровня сформированности компонентов и компетенций

3.1. Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля при экзамене считается, что полученная оценка за компонент проверяемой в билете компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Типовые критерии и шкалы оценивания уровня сформированности компонентов компетенций приведены в общей части ФОС образовательной программы.

3.2.Оценка уровня сформированности компетенций

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации в форме экзамена, защиты курсового проекта используются типовые критерии, приведенные в общей части ФОС образовательной программы.

Типовые задания рубежного тестирования

1 вариант

1.	Главные полюса предназначены для
2.	Электродвигатели предназначены для преобразования
3.	Трансформатор предназначены
4.	Якорь это
5.	Коэффициент мощности это
6.	Дайте определение генератора
7.	Какие законы лежат в основе принципа действия электрических машин
8.	Дайте определение электродвигателя
	Что называется электрической машиной
	В катушке, имеющей 1000 витков протекает ток 2 А, а ее намагничивающая сила
	на
	Номинальное скольжение шестиполюсного асинхронного двигателя 2%, а
	инальная частота вращения
	Трехфазный асинхронный двигатель номинальной мощностью 1,1 кВт работает с
	Д 87%, Cosф=0,835 и потребляет из сети с Uл=380 В ток
	Двигатель, подключенный к сети с f=400 Гц работает с частотой вращения 7760
	мин, со скольжением
	Скольжение рассчитывается по формуле
	При пуске двигателя напряжение понижают для
	Номинальной мощностью называется
	При понижении напряжения вращающий момент двигателя
	При увеличении нагрузки на валу двигателя скольжение
	Критическое скольжение рассчитывается по формуле
20.	При пуске двигателя скольжение равно
1 T	2 вариант
	Величиной, имеющей размерность Гн/м, являетсяапряженность магнитного поля Н
	бсолютная магнитная проницаемость µа
	агнитная индукция В
_	агнитный поток Ф
2. I	Величина ЭДС, наводимой в обмотке трансформатора, не зависит от
	арки стали сердечника
	астоты тока в сети
	мплитуды магнитного поля
г) ч	исла витков катушки
3. F	В ферромагнитных веществах магнитная индукция В и напряженность магнитного поля Н
	ваны соотношением
	== μ0H
	$B = H/\mu a$
	$B = H/\mu 0$
г) B	:= μaH

12.В трёхфазной цепи нагрузка соединена по схеме «звезда» фазное напряжение 380 В, линейное напряжение равно а) 380 В б) 127 В в) 220 В г) 660 В
13.На рисунке изображен ротор
а) асинхронного двигателя с короткозамкнутым ротором б) двигателя постоянного тока в) синхронной неявнополюсной машины г) синхронной явнополюсной машины
14.Первичная обмотка трансформатора включена на напряжение сети U1=1 кВ. Напряжение U2 на вторичной обмотке равно 250 В. Коэффициент трансформации равен
15. Если на щитке трёхфазного понижающего трансформатора изображено ∆/Y, то его обмотки соединены по следующей схеме
16.Зависимость магнитной индукции В от напряженности магнитного поля Н характеризуется гистерезисом, который проявляется
17.Величина скольжения асинхронной машины в двигательном режиме определяется по формуле
18.Если E1>E2, то источники электроэнергии работают а) оба в генераторном режиме;

- б) Е1 в режиме потребителя, а Е2- в режиме генератора;
- в) оба в режиме потребителя;
- г) E1 в режиме генератора, а E2 в режиме потребителя:
- 19.Отношение напряжений на зажимах первичной и вторичной обмоток трансформатора при холостом ходе приближённо равно_____
- а) отношению магнитных потоков рассеяния
- б) отношению токов первичной и вторичной обмоток трансформатора в номинальном режиме
- в) отношению мощностей на входе и выходе трансформатора
- г) отношению чисел витков обмоток.
- 20.В цепи обмотки якоря двигателя постоянного тока с параллельным возбуждением устанавливается пусковой реостат для_____
- а) увеличения потока возбуждения;
- б) уменьшения потока возбуждения;
- в) увеличения частоты вращения;
- г) уменьшения пускового тока:

Ключи к тестам

	Вариант 1							
№	Ответы							
1.	Главные полюсы предназначены для создания основного магнитного потока в машине.							
2.	Электродвигатель предназначен для преобразования электрической энергии в механическую, являясь основным элементом электропривода рабочих машин.							
3.	Преобразование энергии одного напряжения в энергию другого, сводится к преобразованию амплитуды переменного напряжения при сохранности частоты.							
4.	Обозначает компонент электрической машины с рабочей обмоткой, а также подвижную часть магнитопровода электромагнита и реле.							
5.	Безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей и мощности искажения.							
6.	Устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая и т. д.) преобразуются в электрическую энергию.							
7.	В основе принципа действия всех типов электрических машин лежат два закона: закон электромагнитной индукции и закон Ампера.							
8.	Электродвигатель - это электрическая машина, которая преобразует электрическую энергию в механическую.							
9.	Электрические машины – это устройства, преобразующие электрическую энергию в механическую, либо механическую энергию в электрическую.							
10.	2000A							
11.	980об/мин							
12.	2A							
13.	0,04							
14.	$S = \frac{(n_1 - n_2)}{n_1} * 100\%,$							
15.	Если напряжение при пуске понизить в раз, пусковой момент понизится в 3 раза. Поэтому этот способ пуска можно применять только при отсутствии нагрузки на валу, т.е. в режиме холостого хода.							
16.	Номинальная мощность — это та мощность, которую прибор потребляет при нормальных условиях работы. Величина номинальной мощности измеряется в ваттах (Вт) и указывается на корпусе прибора или в инструкции к нему.							

17.	При снижении напряжения уменьшается вращающий момент и частота вращения ротора
	двигателя, так как увеличивается его скольжение.
	Если постепенно повышать нагрузку двигателя, то скольжение будет расти (ротор будет
18.	все сильнее отставать от вращающегося магнитного поля), при этом пропорционально
16.	скольжению будет расти ток, наводимый в роторе, а пропорционально ему будет расти и
	момент.
19.	$S_{\kappa p}=S_{hom} (\lambda+\sqrt{(\lambda^2-1)})$
	При пуске мотора асинхронная скорость равняется нулю, скольжение — единице,
20.	электроток в двигателе максимальный, а значение момента вращения вала выше
	значения момента торможения нагрузки.

Вариант 2										
№ Вариант	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
Ответы	б	a	Γ	$S = \sqrt{P^2 + Q^2}$	В	б	б	Г	В	Γ
№ Вариант	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
Ответы	б	Γ	Γ	б	б	В	S=(n1-n2) / n1	a	Γ	Γ