Министерство науки и высшего образования Российской Федерации Лысьвенский филиал

федерального государственного автономного образовательного учреждения высшего образования

«Пермский национальный исследовательский политехнический университет»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине «Теория автоматизированного управления»

Приложение к рабочей программе дисциплины

Направление подготовки: 09.03.01 Информатика и вычислительная

техника

Направленность (профиль)

Компьютерные системы

образовательной программы:

Квалификация выпускника: «Бакалавр»

Выпускающая кафедра: Технических дисциплин

Форма обучения: Очная, очно-заочная, заочная

Курс: 2,3 (3; 3,4) **Семестр**: 4,5 (5,6; 6,7)

Трудоёмкость:

Кредитов по рабочему учебному плану: 7 ЗЕ Часов по рабочему учебному плану: 252 ч.

Форма промежуточной аттестации:

Экзамен: 5 (6; 7) семестр Диф.зачет: 4 (5; 6) семестр

Курсовая работа: 5 (6; 7) семестр

Фонд оценочных средств для проведения промежуточной аттестации обучающихся для проведения промежуточной аттестации обучающихся по дисциплине является частью (приложением) к рабочей программе дисциплины. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине разработан в соответствии с общей частью фонда оценочных средств для проведения промежуточной аттестации основной образовательной которая устанавливает систему оценивания результатов программы, промежуточной аттестации и критерии выставления оценок. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы И процедуры текущего контроля успеваемости промежуточной аттестации обучающихся по дисциплине.

1. Перечень контролируемых результатов обучения по дисциплине, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины запланировано в течение двух семестров (4-го и 5-го семестра учебного плана очной формы обучения; 5-го и 6-го семестра учебного плана очно-заочной формы обучения; 6-го и 7-го семестра учебного плана заочной формы обучения) и разбито на 5 учебных разделов. В каждом разделе предусмотрены аудиторные лекционные, практические занятия и лабораторные работы, а также самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируется компоненты компетенций знать, уметь, владеть, указанные в РПД, которые выступают в качестве контролируемых результатов обучения по дисциплине (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала, сдаче отчетов по лабораторным работам, практическим занятиям, защиты курсовой работы, диф.зачета и экзамена. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

	Вид контроля										
Контролируемые результаты обучения по дисцип-	Теку	⁄щий	Рубе	жный	Итоговый						
лине (ЗУВы)	C	то	ОЛР/ ОПЗ	Т/КР	Диф. зачет	Экзамен/ Курсовая работа					
Усвоенн	ные знан	ия									
3.1 знать основы системного подхода к исследованию и оптимизации процесса автоматизированного управления	С	ТО	ОЛР/ ОПЗ	Т	ТВ						
3.2 знать понятия «управление» и «система управления»	С	ТО	ОЛР/ ОПЗ	T	TB						
3.3 знать особенности автоматизированных и автоматических систем	С	ТО	ОЛР/ ОПЗ	T	TB						
3.4 знать формальный аппарат анализа и синтеза структуры АСОИУ	С	ТО	ОЛР/ ОПЗ	T	TB						
3.5 знать организационные структуры информационных систем	С	ТО	ОЛР/ ОПЗ	T		ТВ					
3.6 знать процессы жизненного цикла программных средств	С	ТО	ОЛР/ ОПЗ	T		ТВ					
3.7 знать концепцию построения автоматизированных систем на базе информационных технологий	С	ТО	ОЛР/ ОПЗ	T	TB						
3.8 знать подходы к автоматизации предприятий	C	TO	ОЛР/	T		TB					

			ОПЗ			
3.9 знать методологию структурно-функционального проектирования	С	ТО	ОЛР/ ОПЗ	Т		ТВ
3.10 знать методологию объектно-ориентированного проектирования	С	ТО	ОЛР/ ОПЗ	T		ТВ
Освоенн	ьые умен	ния				
У.1 уметь определять состав функциональных задач, решаемых системой		ТО	ОЛР/ ОПЗ	T	П3	
У.2 уметь использовать модели, методы и средства информационных технологий при создании АСОИУ		ТО	ОЛР/ ОПЗ	T	П3	
У.3 уметь проектировать АСУ технологическим процессом с использованием программных средств		ТО	ОЛР/ ОПЗ	T	П3	
У.4 уметь использовать структурно-функциональный анализ и проектирование		ТО	ОЛР/ ОПЗ	T		ПЗ
У.5 уметь использовать объектно-ориентированный анализ и проектирование		ТО	ОЛР/ ОПЗ	Т		ПЗ
У.6 уметь работать с XML		ТО	ОЛР/ ОПЗ	Т		ПЗ
Приобретен	ные вла	адения				
В.1 владеть формальным аппаратом для анализа и синтеза структуры АСОИУ			ОЛР/ ОПЗ		КЗ	3
В.2 владеть методиками формализации систем			ОЛР/ ОПЗ			K3/3
В.3 владеть системами управления содержимым (CMS)			ОЛР/ ОПЗ			K3/3
В.4 владеть тестированием программного обеспечения			ОЛР/ ОПЗ			K3/3

С – собеседование по теме; ТО – коллоквиум (теоретический опрос); КЗ – кейс-задача (индивидуальное задание); ОЛР – отчет по лабораторной работе; ОПЗ – отчет по практическому занятию; Т/КР – рубежное тестирование (контрольная работа); ТВ – теоретический вопрос; ПЗ – практическое задание; КЗ – комплексное задание экзамена; З – защита курсовой работы

Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в форме защиты курсовой работы, диф.зачета и экзамена, проводимая с учетом результатов текущего и рубежного контроля.

2.Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной эффективности учебного процесса, управление процессом формирования заданных компетенций обучаемых, повышение мотивации к учебе и предусматривает оценивание хода освоения дисциплины. В соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования — программам бакалавриата, специалитета и магистратуры в ПНИПУ предусмотрены следующие виды и периодичность текущего контроля успеваемости обучающихся:

- входной контроль, проверка исходного уровня подготовленности обучаемого и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента «знать» заданных компетенций) на каждом групповом занятии и контроль посещаемости лекционных занятий;

- промежуточный и рубежный контроль освоения обучаемыми отдельных компонентов «знать», «уметь», «владеть» заданных компетенций путем компьютерного или бланочного тестирования, контрольных опросов, контрольных работ (индивидуальных домашних заданий), защиты отчетов по лабораторным работам, рефератов, эссе и т.д.

Рубежный контроль по дисциплине проводится на следующей неделе после прохождения модуля дисциплины, а промежуточный — во время каждого контрольного мероприятия внутри модулей дисциплины;

- межсессионная аттестация, единовременное подведение итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы;
 - контроль остаточных знаний.

2.1. Текущий контроль усвоения материала

Текущий контроль усвоения материала в форме собеседования или выборочного теоретического опроса студентов проводится по каждой теме. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений (табл. 1.1) проводится в форме защиты лабораторных работ, практических занятий и рубежных тестирований (после изучения каждого модуля учебной дисциплины).

2.2.1. Защита лабораторных работ

Всего запланировано 13 лабораторных работ. Типовые темы лабораторных работ приведены в РПД.

Защита лабораторной работы проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.2.2. Защита практических занятий

Всего запланировано 13 практических занятий. Типовые темы практических занятий приведены в РПД.

Защита практических занятий проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.2.3. Рубежное тестирование

Согласно РПД запланировано 3 рубежные тестирования (T) после освоения студентами учебных модулей дисциплины (тестирование в 4-м семестре. Первое T по разделу 1 «Основные понятия и определения автоматизированного управления», второе T— по разделу2 «Категориальные понятия системного анализа автоматизированного управления» третье T— по разделу3 «Модели и процесс принятия решений в АСУ».

Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

Типовые вопросы теста по разделу 1 «Основные понятия и определения автоматизированного управления»:

- 1. Следующая причина: появление сложных систем управления с большим числом элементов электроники и автоматики является причиной появления научной дисциплины...
 - а) Вариационное исчисление;
 - б) Теория скалярной оптимизации;
 - в) Теория векторной оптимизации;
 - г)Теория автоматизированных систем управления.
- 2. В следующем определении вставьте вместо многоточий нужный термин: «Под ... понимается процесс организации такого целенаправленного воздействия на некоторую часть среды, называемую ... управления, в результате которого удовлетворяются потребности субъекта, взаимодействующего с этим ...».
- 3. Указать на вариант понятия «алгоритм управления»:
- а) Способ решения задачи, позволяющий определить оптимальное значение управляющей функции;
- б) Способ решения задачи, позволяющий определить оптимальное значение управляемой функции;
- в) Способ решения задачи, позволяющий определить оптимальное значение ограничивающей функции;
- г) Способ решения задачи, позволяющий определить оптимальное значение коэффициентов функции.
- 4. Вставьте вместо многоточия нужное слово: *Процесс управления* это ... процесс, заключающийся в сборе информации о ходе процесса, передаче ее в пункты накопления и переработки, анализе поступающей, накопленной и справочной информации, принятии решения на основе выполненного анализа, выработке соответствующего управляющего воздействия и доведении его до объекта управления.
- 5. Вставьте нужное слово: «Система ... совокупность взаимодействующих между собой объекта управления и органа управления, деятельность которых направлена на достижение заданной цели ...»
- 6. Задачи: стабилизация, выполнение программы, слежение, оптимизация решаются системой:
 - а) управления;
 - б) конкретизации;
 - в) организации;
 - г)компенсации.
- 7. Вставьте слова «система», «элемент», «подсистема» в нужные места:

... может быть разделена на ... не сразу, а последовательным расчленением на ..., которые представляют собой компоненты более крупные, чем ..., и в то же время более детальные, чем ... в целом.

8. Вставьте слова «система», «элемент», «подсистема», «структура» и «связь» в нужные места.

Понятие ... означает строение, расположение, порядок. ... отражает наиболее существенные взаимоотношения между ... и их группами (...), которые мало меняются при изменениях в ... и обеспечивают ... и ее основных свойств. ... – это совокупность ... и ... между ними.

9. Вписать правильно понятия «состояние», «поведение» и «модель» системы:

Если система способна переходить из одного состояния в другое (например, $z_1 \rightarrow z_2 \rightarrow z_3$), то говорят, что она *обладает*

Понятием ... обычно характеризуют мгновенную фотографию, «срез» системы, остановку в ее развитии.

Под ... системы понимается описание системы, отображающее определенную группу ее свойств.

- 10. В следующем определении раскрыто понятие
 - а) намерение;
 - б) перспектива;
 - в) цель;
 - г) устремление.
- ...— это идеальное устремление, которое позволяет коллективу увидеть перспективы или реальные возможности, обеспечивающие своевременность завершения очередного этапа на пути к идеальным устремлениям.
- 11. Какое понятие здесь лишнее: микросистемы, малые системы, сложные, ультрасложные, суперсистемы?
- 12. Из следующего перечня исключить те, которые не имеют отношения к основным этапам управления:
 - 1. Формирование целей.
 - 2. Определение объекта управления.
 - 3. Структурный синтез модели.
 - 4. Идентификация параметров модели объекта.
 - 5. Планирование эксперимента.
 - 6. Синтез управления.
- 7. Реализация управления или отработка в объекте оптимального решения, полученного на предыдущем этапе.
 - 8. Адаптация.
 - 9. Аккомодация

- 13. Объектом теории автоматизированного управления является:
 - а) процесс управления в природных системах;
 - б) процесс управления в социальной сфере;
- в)процесс управления в организационно-экономических и технических системах;
 - г) процесс управления в научных организациях.
- 14. Из методов дискретной математики мы изучаем то, что относится к:
 - а)Теории множеств и общей алгебре;
 - б) Математическая логика;
 - в) Теория автоматов;
 - г) Общая теория графов.

Ответы на тест по 1 разделу

1	2	3	4	5	6	7
Γ	Управлением,	a	информационный	Управления,	a	Система, элементы, подсис-
	объектом,			организации		темы, элементы, Система
	объектом					
	8		9	10		11
	Структура,		Поведением,	В		микросистемы
	Структура,		состояние,			
	элементами,		моделью			
	(компонента-					
	ми, подсисте-					
	мами), системе,					
	системы,					
	Структура,					
	элементов и					
	связей					
	12		13	14		
	9		В	Γ		

Типовые вопросы теста по разделу 2 «Категориальные понятия системного анализа автоматизированного управления»:

- 1. Системность является общим свойством ...
 - а) материализма;
 - б) материи;
 - в) материнства;
 - г) материалов.
- 2. Следующие признаки обязательные признаки ...: структурированность системы, взаимосвязанность составляющих ее частей, подчиненность организации всей системы определенной цели.
 - а) систематизации;
 - б) систематичности;

- в) системности;
- г) бессистемности.
- 3. Приведите современный термин следующих понятий:
- а) «приложение системных концепции к функциям управления, связанным с планированием»;
 - б) «анализ систем»;
 - в) «системные исследования».

4. В следующем списке:

- 1. Постановка задачи исследования.
- 2. Построение модели исследуемого объекта.
- 3. Решение поставленной математической задачи. перечислены...
 - а) этапы системного анализа;
 - б) принципы системного анализа;
 - в) процедуры системного анализа;
 - г) модели системного анализа.

5. В следующем списке:

- определение целей системного анализа;
- изучение структуры системы, анализ ее компонентов, выявление взаимосвязей между отдельными элементами;
- сбор данных о функционировании системы, исследование информационных потоков, наблюдения и эксперименты над анализируемой системой;
 - построение моделей;
- проверка адекватности моделей, анализ неопределенности и чувствительности;
 - исследование ресурсных возможностей;
 - формирование критериев;
 - генерирование альтернатив;
 - реализация выбора и принятия решений;
 - внедрение результатов анализа.

перечислены...

- а) этапы системного анализа;
- б) принципы системного анализа;
- в) процедуры системного анализа;
- г) модели системного анализа.
- 6. По каким признакам характеризуются связи между элементами системы? по характеру взаимосвязи как прямые и обратные, а по виду проявления (описания) как детерминированные и вероятностные.

7. По признаку силы связи делят на:

- а) прямые и обратные;
- б) направленные и ненаправленные;
- в) сильные и слабые;
- г) легковесные и тяжеловесные.
- 8. По признаку направленности связи делят на:
 - а) прямые и обратные;
 - б) направленные и ненаправленные;
 - в) сильные и слабые;
 - г) легковесные и тяжеловесные.
- 9. По признаку характера связи делят на:
 - а) прямые и обратные;
 - б) направленные и ненаправленные;
 - в) сильные и слабые;
 - г) подчинения, равноправные, генетические, связи управления.
- 10. Следующие методы: графический метод, метод с использованием сетевой модели, графоаналитический метод, являются методами...
 - а) методы информатики и программирования;
 - б) анализа информационных потоков;
 - в) математического анализа;
 - г) статистического анализа.
- 11. Следующие виды моделей не относятся к математическим моделям системного анализа:
 - а) астатическая модель;
 - б) кинематическая модель;
 - в) статическая модель;
 - г) динамическая модель.
- 12. Следующие типы моделей не относятся к математическим моделям системного анализа:
 - а) астатическая модель;
 - б) аналитические;
 - в) кинематическая модель;
 - г) имитационные.
- 13. Основные виды критериев, наиболее часто встречающиеся в анализе сложных технических систем это...
- 14. Следующие показатели критериев *прибыль, рентабельность, себестоимость* определяют:
 - а) экономические критерии;
 - б) технико-экономические;
 - в) технологические;
 - г) тактико-технические.

- 15. Следующие показатели критериев выход продукта, характеристики качества определяют:
 - а) экономические критерии;
 - б) технико-экономические;
 - в) технологические;
 - г) тактико-технические.
- 16. Следующие показатели критериев производительность, надежность, долговечность определяют:
 - а) экономические критерии;
 - б) технико-экономические;
 - в) технологические;
 - г) тактико-технические.

Ответы на тест по 2 разделу

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
б	a	Системный	a	В	В	В	б	Γ	a	б	б	Экономичес	a	б	Γ
		анализ										кие			
												критерии			

Типовые вопросы теста по разделу 3 «Модели и процесс принятия решений в АСУ»

- 1. Наличие следующих основных черт:
 - 1) Наличие цели (целей).
 - 2) Наличие альтернативных линий поведения.
 - 3) Наличие ограничивающих факторов.

... характеризуют:

- а) ситуации, в которых осуществляется охота;
- б) ситуации, в которых осуществляется рыбалка;
- в) ситуации, в которых осуществляется выбор;
- г) ситуации, в которых осуществляется шпионаж.
- 2. Следующий фактор не имеет отношения к принятию решений:
 - а) экономический фактор;
 - б) педагогический фактор;
 - в) технический фактор;
 - г) социальный фактор.
- 3. Следующие факторы принятия решений *деньги*, *производственные и людские ресурсы*, *время* и т.п. являются...:
 - а) экономическими;
 - б) техническими;
 - в) социальными;
 - г) педагогическими.

- 4. Следующие факторы принятия решений *габариты*, *вес*, *энергопотребление*, *надежность*, *точность* и т.п. являются...:
 - а) экономическими;
 - б) техническими;
 - в) социальными;
 - г) педагогическими.
- 5. Факторы принятия решений, которые учитывают требования человеческой этики и морали, а также экологические требования являются...:
 - а) экономическими;
 - б) техническими;
 - в) социальными;
 - г) педагогическими.
- 6. В следующую формулировку общей постановки задачи принятия решений вставить правильно термины «неконтролируемых», «неопределённых», «допустимых значений», «критерий оптимальности»:

При заданных значениях фиксированных и неконтролируемых факторов A_1 , $A_2, ..., A_p$, стохастических ... факторов $Y_1, Y_2, ..., Y_q$ с учетом ... факторов $Z_1, Z_2, ..., Z_r$ найти $X_{1 \text{ опт}}, X_{2 \text{ опт}}, ..., X_{l \text{опт}}$, принадлежащее областям их ... $W_{x_1}, W_{x_2}, ..., W_{x_l}$, которые по возможности обращали бы в максимум (минимум) ... F.

- 7. Укажите соответствие между классификационными признаками и видами задач принятия решений:
- 1) количество целей управления и соответствующих им критериев оптимальности;
- 2) наличие или отсутствие зависимости критерия оптимальности и ограничений от времени;
- 3) наличие случайных и неопределенных факторов; этот признак называют признаком «определенность риск неопределенность»;
 - 4) используемый для их решения математический аппарат.

Виды задач:

- а) статические и динамические ЗПР;
- б) одноцелевые или однокритериальные (скалярные) и многоцелевые или многокритериальные (векторные) ЗПР;
 - в) теория задач математического программирования;
 - г) принятие решений при риске, или стохастические ЗПР.
 - 8. Следующая задача

$$-3x_1+x_2+2x_3 \rightarrow \max(\min)$$

$$\begin{cases}
-x_1 + x_2 + 2x_3 = 2, \\
-x_1 - x_3 \ge -4, \\
x_1 + x_2 + x_3 \ge 6, \\
x_j \ge 0 \ (j = 1, 2, 3).
\end{cases}$$

является

- а) многокритериальной задачей;
- б) принятия решений при риске;
- в) однокритериальной задачей;
- г) динамической задачей.
- 9. Следующая задача

$$\begin{cases} a_{11}x_1 + a_{12}x_2 \ge b_1, \\ a_{21}x_1 + a_{22}x_2 \le b_2, \\ a_{31}x_1 + a_{32}x_2 \le b_3, \\ a_{41}x_1 + a_{42}x_2 \le b_4, \\ x_1, x_2 \ge 0. \end{cases}$$

$$L_1 = c_1x_1 + c_2x_2 \rightarrow \max,$$

$$L_2 = d_1x_1 + d_2x_2 \rightarrow \min,$$

является

- а) многокритериальной задачей;
- б) принятия решений при риске;
- в) однокритериальной задачей;
- г) динамической задачей.

10. Следующая задача:

Найти оптимальные стратегии и цены игр, заданных платежными матрицами:

a)
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{pmatrix}$$
; 6) $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{pmatrix}$.

является

- а) многокритериальной задачей;
- б) принятия решений при риске;
- в) однокритериальной задачей;
- г) динамической задачей.

11. Следующие критерии: **Критерий Лапласа**, **Критерий Вальда**, **Критерий Сэвиджа**, **Критерий Гурвица** применяются при решении

- а) многокритериальных задач;
- б) задач принятия решений при риске;
- в) однокритериальных задач;
- г) задач в условиях неопределённости.

12. Следующие принципы: равномерности, справедливой уступки, абсолютной уступки, относительной уступки применяются при решении

- а) многокритериальных задач;
- б) задач принятия решений при риске;
- в) однокритериальных задач;
- г) задач в условиях неопределённости.

13. Свертка локальных критериев применяется при решении

- а) многокритериальных задач;
- б) задач принятия решений при риске;
- в) однокритериальных задач;
- г) задач в условиях неопределённости.

14. Способы нормализации локальных критериев применяются при решении

- а) многокритериальных задач;
- б) задач принятия решений при риске;
- в) однокритериальных задач;
- г) задач в условиях неопределённости.

15. Способы задания и учета приоритета локальных критериев применяются при решении

- а) многокритериальных задач;
- б) задач принятия решений при риске;
- в) однокритериальных задач;
- г) задач в условиях неопределённости.

Ответы на тест по 3 разделу

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
В	б	a	б	В	неконтролируемых,	1-б,	a	a	a	Б,г	a	a	a	a
					неопределённых,	2-a,								
					допустимых значе-	3-г,								
					ний, критерий оп-	4-в								
					тимальности									

2.3. Промежуточная аттестация (итоговый контроль)

Допуск к промежуточной аттестации осуществляется по результатам теку-

щего и рубежного контроля. Условиями допуска являются успешная сдача всех лабораторных работ и положительная интегральная оценка по результатам текущего и рубежного контроля.

Промежуточная аттестация, согласно РПД, проводится в виде дифференцированного зачёта в 4-м семестре и экзамена в 5-м семестре по дисциплине устно по билетам. Билет содержит теоретические вопросы (ТВ) для проверки усвоенных знаний, практические задания (ПЗ) для проверки освоенных умений и комплексные задания (КЗ) для контроля уровня приобретенных владений всех заявленных компетенций.

Билет формируется таким образом, чтобы в него попали вопросы и практические задания, контролирующие уровень сформированности *всех* заявленных компетенций. Форма билета представлена в общей части ФОС образовательной программы.

2.3.1. Защита курсовой работы

В первую очередь в качестве темы курсовой работы студентам предлагается тема «Определение лучшего варианта плоттера по вариантам». Постановка задачи следующая:

ЦКБ Для отдела необходимо устройство ДЛЯ вывода на печать конструкторских чертежей (плоттер). Имеются плоттеры четырёх моделей. Каждая характеризуется четырьмя локальными критериями: возможный формат отпечатанного чертежа F (мм), разрешение чертежа R (dpi), объем буфера V (КБайт) и стоимость S (уе). Конкретные значение указанных локальных критериев для каждого из вариантов представлены в таб.:

				Таблица
Критерий № варианта	F	R	V	S
1	f_{11}	f_{12}	f_{13}	$oldsymbol{f}_{14}$
2	f_{21}	$oldsymbol{f}_{22}$	f_{23}	$oldsymbol{f}_{24}$
3	f_{31}	f_{32}	f_{33}	f_{34}
4	f_{41}	f_{42}	f_{43}	f_{44}

Требуется, используя известные схемы компромисса, определить лучший вариант плоттера:

- а) без учета приоритета локальных критериев;
- б) с учетом приоритета локальных критериев.

Кроме того, студент может в качестве темы курсовой работы выбрать одну из следующих тем:

- 1. Об аналитическом применении метода идеальной точки решения многоцелевой задачи линейного программирования.
- 2. О геометрическом применении метода идеальной точки решения многоцелевой задачи линейного программирования.
 - 3. О решении многоцелевой задачи о назначениях.
 - 4. Об основных методах решения многокритериальных задач.

- 5. Оценка многокритериальных альтернатив в многокритериальной теории полезности.
- 6. Подход аналитической иерархии при оценке многокритериальных альтернатив.
 - 7. Автоматизация решения задачи выбора места постройки аэропорта.
- 8. Визуализация геометрического метода решения задачи линейного программирования.
 - 9. Симплекс-метод в форме презентации.
 - 10. Транспортная задача в форме презентации.
- 11. Применение методов оптимизации на графах при решении некоторых задач теории автоматизированного управления.
- 12. Некоторые математические методы оптимизации в задачах теории автоматизированного управления (по вариантам).
- 13. Оптимальный раскрой внешней облицовки каркасного дома (по вариантам).

Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.3.2. Типовые вопросы для дифференцированного зачёта по дисциплине Типовые вопросы для контроля усвоенных знаний:

- 1. Каковы причины появления автоматизированного управления и что Вы знаете об истории становления и развития теории автоматизированного управления?
- 3. Как Вы понимаете смысл определений управления в широком смысле? Что такое «алгоритм управления». Сформулируйте понятие «процесс управления». В каких взаимоотношениях находятся объект управления и управляющий орган?
- 4. Перечислите задачи, решаемые системой управления. В чем состоит принципиальная разница между автоматическим и автоматизированным управлениями?
- 5. Раскройте понятие «система», «элемент», «подсистема». Поясните содержание понятий «структура» и «связь». Что такое «иерархия»? Что вкладывается в понятия «состояние», «поведение» и «модель» системы?
 - 6. Раскройте понятие «цель». Какова его роль в управлении?
- 7. Большая (сложная) система как основной вид систем в теории автоматизированного управления. Назовите и поясните характерные особенности больших систем.
 - 8. Перечислите основные этапы управления.
- 9. Что является объектом теории автоматизированного управления? Как Вы понимаете предмет теории автоматического управления?
- 10. Раскройте содержание трех циклов математических основ теории автоматизированного управления и кибернетики.

- 11. Расскажите о важности кибернетических моделей в проектировании АСУ.
 - 12. Расскажите о вероятностных методах в кибернетике.
 - 13. Какие Вы знаете методы оптимизации, применяемые в кибернетике?
- 14. Какая роль в кибернетике отводится дискретным моделям? Дайте классификацию методов дискретной математики и поясните их роль в теории автоматизированного управления.
- 15. Охарактеризуйте основные кибернетические модели вероятностной природы. Какое различие Вы можете найти между вероятностными и детерминированными моделями?
- 16. Что Вы знаете о теории искусственного интеллекта? Какова роль моделирования в теории автоматизированного управления? По каким признакам классифицируется моделирование? Дайте классификацию основных видов моделирования.
- 17. Поясните роль математического моделирования. Что такое имитационное и ситуационное моделирование?
- 18. Системность как общее свойство материи. Что такое системные представления? Расскажите о системном подходе и системных исследованиях.
- 19. Раскройте термин «системный анализ». Какие Вы знаете определения системного анализа?
- 20. Из каких этапов состоит системный анализ? Как Вы представляете себе методику системного анализа?
- 21. Перечислите процедуры системного анализа. В чем состоит формулирование проблемы при системном анализе?
- 22. Дайте определение цели системного анализа. Каков порядок анализа структуры системы?
- 23. С какой целью осуществляется сбор данных о функционировании системы? Какие Вы знаете методы анализа информационных потоков?
- 24. Зачем необходимо построение модели системы? Как осуществляется проверка адекватности модели системы? В чем состоит анализ неопределенности и чувствительности модели системы?
- 25. Расскажите о видах ресурсов, используемых при реализации задач системного анализа.
- 26. С какой целью выполняется формирование критериев для системного анализа?
- 27. Каким образом производится генерирование альтернатив при системном анализе? Перечислите методы, используемые в системном анализе для проведения работы по формированию множества альтернатив.
- 28. Какие сложности возникают при решении задач выбора и принятия решений?
- 29. Каким образом осуществляется внедрение результатов системного анализа?
- 30. Основные условия, в которых осуществляется выбор решения. Перечислите основные группы ограничивающих факторов.
 - 31. Что такое внешние и внутренние параметры?

- 32. Как реализуется процесс принятия решений?
- 33. Сформулируйте общую постановку задачи принятия решений.
- 34. Приведите классификацию задач принятия решений. В чем сущность однокритериальной задачи принятия решений? В чем сущность многокритериальной задачи принятия решений?
- 35. Как могут приниматься решения в условиях риска? В чем отличия решений в условиях риска и в условиях неопределенности? В чём заключаются основные критерии оптимальности выбора решений в условиях неопределенности.
- 36.Основные схемы компромисса в многокритериальных задачах. Что представляет собой принцип равномерности? В чем заключается принцип справедливой уступки? В чем отличия принципа абсолютной уступки от принципа относительной уступки?
- 37. Основные схемы компромисса в многокритериальных задачах. Поясните принцип выделения одного оптимизируемого критерия. Что представляет собой принцип последовательной уступки? Что такое свертка локальных критериев?
- 38. Способы нормализации локальных критериев. Способы задания и учета приоритета локальных критериев. Что представляет собой ряд приоритета? Что такое вектор приоритета? Как задается весовой вектор?
- 39. Каким образом обычно количественно задается приоритет критериев? Чем отличаются друг от друга «жесткий» и «гибкий» приоритеты?

2.3.3. Типовые вопросы для экзамена по дисциплине

Типовые вопросы для контроля усвоенных знаний:

- 1. Описание одномерных линейных САУ дифференциальными уравнениями. Построение структурной схемы САУ по её дифференциальному уравнению, нахождение выходного сигнала по входному.
- 2. Описание многомерных линейных САУ дифференциальными уравнениями. Нахождение выходного сигнала по входному.
 - 3. Устойчивость. Исследование на устойчивость линейных систем.
- 4. Управляемость и наблюдаемость. Исследование на управляемость и наблюдаемость линейных многомерных систем.
- 5. Исследование на управляемость и наблюдаемость линейных одномерных систем.
 - 6. Случайный процесс, его вероятностные характеристики, нахождение.
- 7. Вероятностные характеристики производная и интеграла случайного процесса. Спектральная плотность случайного процесса.
- 8. Описание стохастических САУ дифференциальными уравнениями. Нахождение вероятностных характеристик стохастических САУ, описываемых дифференциальными уравнениями.
- 9. Передаточная функция динамической системы, её применение к нахождению спектральной плотности.
- 10. Передаточная функция динамической системы, её применение к нахождению дисперсии.
- 11. Передаточная функция динамической системы, её применение к нахождению формирующего фильтра.

2.3.4. Шкалы оценивания результатов обучения на экзамене

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь*, *владеть* заявленных компетенций проводится по 4-х балльной шкале оценивания путем выборочного контроля во время экзамена.

Типовые шкала и критерии оценки результатов обучения при сдаче экзамена для компонентов *знать*, *уметь и владеть* приведены в общей части ФОС образовательной программы.

2.3.5. Шкалы оценивания результатов обучения на дифференцированном зачете

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь*, *владеть* заявленных компетенций проводится по 4-х балльной шкале оценивания.

Типовые шкала и критерии оценки результатов обучения при сдаче зачета для компонентов *знать*, *уметь и владеть* приведены в общей части ФОС образовательной программы.

3. Критерии оценивания уровня сформированности компонентов и компетенций

3.1. Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля при экзамене считается, что полученная оценка за компонент проверяемой в билете компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Типовые критерии и шкалы оценивания уровня сформированности компонентов компетенций приведены в общей части ФОС образовательной программы.

3.2.Оценка уровня сформированности компетенций

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации в форме защиты курсовой работы и экзамена используются типовые критерии, приведенные в общей части ΦOC образовательной программы.