Министерство науки и высшего образования Российской Федерации Лысьвенский филиал

федерального государственного автономного образовательного учреждения высшего образования

«Пермский национальный исследовательский политехнический университет»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине «Строительные машины и оборудование» Приложение к рабочей программе дисциплины

Направление подготовки: 08.03.01 «Строительство»

Направленность (профиль) Промышленное и гражданское строительство

образовательной программы:

Квалификациявыпускника: «Бакалавр»

Выпускающая кафедра: Технических дисциплин

Форма обучения: Очная, заочная

Курс: 3 **Семестр**: 5 (6)

Трудоёмкость:

Кредитов по рабочему учебному плану: 4 3E Часов по рабочему учебному плану: 144 ч.

Виды промежуточного контроля:

Экзамен: 5 (6) семестр

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине является частью (приложением) к рабочей программе дисциплины. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине разработан в соответствии с общей частью фонда оценочных средств ДЛЯ проведения промежуточной аттестации программы, которая образовательной устанавливает систему оценивания результатов промежуточной аттестации и критерии выставления оценок. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы и процедуры текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине.

1. Перечень контролируемых результатов обучения по дисциплине, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины запланировано в течение одного семестра (5-го семестра учебного плана очной формы обучения и 6-го семестра учебного плана заочной формы обучения). В семестре предусмотрены аудиторные лекционные, практические занятия, а также самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируются компоненты компетенций знать, уметь, владеть, указанные в РПД, которые выступают в качестве контролируемых результатов обучения по дисциплине (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала, сдаче отчетов по практическим занятиям и экзамена. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

	Вид контроля			
Контролируемые результаты обучения по	Текущий	екущий Рубежный		Итоговый
дисциплине (ЗУВы)	ТО	ОПЗ	Т/КР	Экзамен
Усвоені	ные знания			
3.13нать	TO1		КР1	TB
- назначение, основные параметры, принципы			KP2	
построения, рабочие процессы строительных				
машин и оборудования;				
– специальную и нормативную литературу по				
строительным машинам и оборудованию;				
 методику расчета эксплуатационной 				
производительности строительных машин;				
– методику определения времени работы				
строительных машин при выполнении				
расчетных производственных процессов;				
 методику инженерных расчетов по 				
рациональному выбору строительных машин				
и оборудования при выполнении				
определенных объемов строительных работ в				

	Т	ı	Т	,
конкретных производственных условиях;				
- требования Правил безопасности опасных				
производственных объектов, на которых				
используются подъемные сооружения				
(Приказ Ростехнадзора No 533 от 12.11.2013				
г.);				
– требования техники безопасности и охраны				
окружающей среды.				
Освоени	ные умения			
У.1Уметь		ОП31-	КР1	ПЗ
выполнять варианты расчетов		ОП39	KP2	
производительностей строительных машин и				
определять время использования машин при				
выполнении расчетных объемов работ для				
различных строительных процессов;				
– разрабатывать расчетные схемы по				
известным параметрам строительных машин				
и оборудования;				
– выполнять инженерные расчеты по				
определению кратности полиспастов				
грузоподъемных машин, рассчитывать и				
анализировать устойчивость башенных				
кранов в рабочем состоянии;				
– выполнять инженерные расчеты по подбору				
комплектов строительных машин и				
оборудования для определенных				
технологических процессов строительства.				
	<u></u>	ия		
В.1 Владеть		ОП31-		ПЗ
- навыками обоснования выбора вариантов		ОП39		
строительных машин отечественного и				
зарубежного производства по технико-				
экономическим характеристикам;				
 навыками работы с отечественной и 				
зарубежной справочной и специальной				
литературы по вопросам применения				
строительных машин и оборудования.				

C- собеседование по теме; TO-теоретический опрос; K3- комплексное задание (индивидуальное задание); $O\Pi 3-$ отчет по практическому занятию; T/KP- рубежное тестирование (контрольная работа); TB- теоретический вопрос; TA- практическое задание.

Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в форме экзамена, проводимая с учётом результатов текущего и рубежного контроля.

2. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной эффективности учебного процесса, управление процессом формирования

обучаемых, заданных компетенций повышение мотивации предусматривает оценивание хода освоения дисциплины. В соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования специалитета ПНИПУ программам бакалавриата, И магистратуры предусмотрены следующие виды И периодичность текущего контроля успеваемости обучающихся:

- входной контроль, проверка исходного уровня подготовленности обучаемого и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента «знать» заданных компетенций) на каждом групповом занятии и контроль посещаемости лекционных занятий;
- промежуточный и рубежный контроль освоения обучаемыми отдельных компонентов «знать», «уметь» заданных компетенций путем контрольных опросов, контрольных работ (индивидуальных домашних заданий), защиты отчетов по практическим работам, рефератов, эссе и т.д.

Рубежный контроль по дисциплине проводится на следующей неделе после прохождения модуля дисциплины, а промежуточный — во время каждого контрольного мероприятия внутри модулей дисциплины;

- межсессионная аттестация, единовременное подведение итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы;
 - контроль остаточных знаний.

2.1. Текущий контроль усвоения материала

Текущий контроль усвоения материала в форме собеседования или выборочного теоретического опроса студентов проводится по каждой теме. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений (табл. 1.1) в форме защиты практических работ и рубежных контрольных работ

2.2.1. Защита отчетов практическим занятиям

Всего запланировано 9 практических занятий. Типовые темы практических занятий приведены в РПД.

Защита отчетов по практическим занятиям проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.2.2. Рубежная контрольная работа

Согласно РПД запланировано 2 рубежные контрольные работы (КР) после освоения студентами лекционного и практического материала. Первая КР -«Общие сведения о строительных машинах», вторая КР - «Общие сведения по эксплуатации строительных машин и оборудования».

Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

Типовое задание первой КР:

При выполнении первой контрольной работы студент должен ответить

1 1 1	1	
письменно на 4 вопроса.		
I вариант		
1.Рабочий орган – это часть машины,	с помощью которой вып	олняются
(Ответ: раб	очие операции)	
2. Электродвигатели особенно широко п	рименяют в качестве прив	ода
машин – бетоно	смесителей, дробилок и д	ρ.
(Ответ: стационарных строительных)		
3. Передаточные механизмы (трансми	ссии) служат для осущ	ествления
с рабочим с	борудованием, а также с	ходовым
оборудованием самоходных машин при ра	зличных комбинациях с	коростей,
моментов и сил (Ответ: силового оборудовани	я)	_

- 4. Силовая установка представляет собой
- а) механизм, состоящий из привода и трансмиссии;
- б) агрегат, состоящий из двигателя и вспомогательных систем;
- в)связь силового оборудования с рабочим оборудованием;

(Ответ: б)

Задание: Определите касательную силу сопротивления резанию грунта (суглинок без включений) P_{01} экскаватором ЭО-3333 с ковшом, ёмкостью 0,65 (по А.С. Реброву)

 $k = 0.8 \, \kappa z / cm^2$ – среднее удельное сопротивление грунта резанию;

 $k_1 = 0.6 \ \kappa / cm^2$ – средняя предельная несущая способность грунта;

 $\delta = 25^{\circ}$ –угол резания;

 μ_1 – коэффициент трения стали о грунт: $\mu_1 = 0.3$;

 $n = 12 \, \text{шm}$ — количество зубьев ковша;

b = 150 cм – ширина срезаемой стружки грунта;

h = 80 cm — толщина срезаемой стружки грунта;

 $\alpha = 6^{\circ}$ -задний угол заострения зубьев;

Z = 380cm – проекция линии износа зубьев на вертикальной оси;

V = 350 cm проекция линии износа зубьев на горизонтальной оси (Ответ: $P_{01}=31272 \text{ кг/см}^2$)

II вариант

1.Силовая установка – это часть машины, которая механизмы машины. (Ответ: приводит в движение)

2.Двигатели внутреннего сгорания являются основным
(Ответ: приводом) всех транспортных землеройных и землеройно-транспортных
машин.
3. Ходовое оборудование (Ответ: у самоходных машин)
предназначено для передвижения всей машины и (Ответ:
передачи давления) от веса машины и рабочих нагрузок на основание;
4.Трансмиссии – это механизмы,
а) передающие движение от силовой установки отдельным сборочным
единицам (узлам) машины или от одной сборочной единицы к другой;
б) входящие в конструкцию машины и выполняющие определенную
функцию;
в) предназначенные для передвижения всей машины;
(Ответ: а)
5. Задание: Определить силу сопротивления резанию мерзлых грунтов при
категории грунта Vиего полусвободном резании экскаватором ЭО-3333 с ковшом
ёмкостью 0,65 (по формуле А.Н. Зеленина)
$C_v = 50$ – число ударов ударника ДорНИИ с площадью штампа 1 см ² ;
$\mu = 0.7$ – коэффициент, учитывающий характер разработки грунта
$\delta = 40^{\circ}$ –угол резания ;
b = 150 cм — ширина рыхления грунта;
$h = 110 c_M - $ глубина рыхления грунта;
(Ombem: $Wp = 21539 \kappa c/c M^2$)
(Omocin. Np 2133) Kerem)
Типовые задания второй КР:
При выполнении второй контрольной работы студент должен ответить
письменно на четыре вопроса
І вариант
1. К транспортным машинам относятся и
комплексы на их основе (Ответ: автомобили, тягачи)
2.Бетонные и растворные смеси приготовляют путем механического
перемешивания их компонентов в (Ответ
смесительных машинах)
3.К уплотняющим машинам статического действия относятся
и катки. (Ответ: прицепные, самоходные)
4.Рабочим оборудованием кранов являются
а) основные и удлиненные (со вставками) стрелы; гуськи; передвижные
каретки;
б) основные и удлиненные (со вставками)гуськи; передвижные каретки
стрелы;
в) основные стрелы; удлиненные (со вставками) гуськи; передвижные
каретки;
(Ответ: а)
5.Задание.
а) Определить техническую производительность бетоно-смесительных машин цикличного действия, м ³ /ч,
машин цимличпого допотоил, м /ч,

 V_3 – объем готовой смеси в одном замесе, л;

 $V_{\rm 6} = 50$ л — вместимость смесительного барабана по загрузке составляющих (полезный объем барабана),

k = 0,7— коэффициент выхода готовой смеси;

n=2 — число замесов, выдаваемых смесителем в течение 1 ч

(Omsem: $\Pi_m = 0.05 \, \text{M}^3/\text{4}$)

- б) Определить техническую производительность смесительных машин непрерывного действия с принудительным смешиванием, $m^3/4$,
- S средняя площадь поперечного сечения потока смеси в корпусе смесителя, \mathbf{m}^2 ,

 $k_{\rm H} = 30$ – коэффициент наполнения сечения корпуса смесителя;

d = 1,5— диаметр лопастей смесителя;

v = 30 м/c— скорость движения смеси в направлении продольной оси корпуса смесителя, м/c,

s = 0,5м— шаг лопастей;

 $\omega = 60c^{-1}$ – частота вращения лопастного вала.

(Omeem: $\Pi_m = 22.6 \text{ m}^3/\text{y}$)

II вариант

- 1.Самосвал грузовой автомобиль с кузовом, _____ для выгрузки груза (*Ответ: механически наклоняемым*)
- 2.Дробление осуществляется за счет следующих физико-механических воздействий: _________, __________, излома, среза, истирания, удара (Ответ: раздавливания, раскалывания)
- 3. Трамбующие машины уплотняют грунт ударами (*Ответ: трамбованием*) свободно падающих грузов или _______ опусканиями рабочего органа машины, а также _______, приложенной к массе рабочего органа машины, и контактирующего с грунтом (*Ответ: принудительным; вибрацией*)
- 4.По возможности перемещения в ходе выполнения технологических операций строительные краны подразделяют:
 - а) грузоподъемные, приставные и стационарные, самоходные краны
 - б) стационарные, самопереставные, самоподъемные и самоходные краны
 - в) самоходные, самоподъемные, переставные и стационарные краны

(Ответ: в)

5.Задание.

Определить техническую производительность сваеустановщика C-735 в смену (оборудован механизмами захвата трактор типа C-100ГП с бульдозером Д-494)

t_{чп}= 2 мин – чистое время погружения сваи

 $t_{cr} = 2$ мин- время на строповку сваи и установку отводных блоков

 $t_{rop} = 1$ мин -время подтаскивания сваи к копру

 $t_{\text{вер}} = 2$ мин - время подъема сваи на копер с той же скоростью;

 t_{vc} = 5мин - время установки сваи в направляющие копра;

 t_{vm} = 4мин - время установки наголовника и молота на сваю;

 t_{on} =2мин -время опускания и установки сваи на грунт в проектное положение;

t_{ко}= 4мин- время, затрачиваемое на контроль направления погружения сваи;

 t_{pc} = 1мин - время на расстраповку сваи;

 $t_{\text{пм}} = 4$ мин - время на подъем молота и снятие наголовника;

 t_{MK} = 10мин - время на маневры копра.

(Ответ: $\Pi_m = 12$ свай/смену)

2.3. Промежуточная аттестация

Допуск к промежуточной аттестации осуществляется по результатам текущего контроля. Условиями допуска являются успешная сдача всех практических работ и положительная интегральная оценка по результатам текущего контроля.

Промежуточная аттестация, согласно РПД, проводится в виде экзамена по дисциплине устно по билетам. Билет содержит теоретические вопросы (ТВ) для проверки усвоенных знаний, практические задания (ПЗ) для проверки освоенных умений и комплексные задания (КЗ) для контроля уровня приобретенных владений всех заявленных компетенций.

Билет формируется таким образом, чтобы в него попали вопросы и практические задания, контролирующие уровень сформированности *всех* заявленных компетенций. Форма билета представлена в общей части ФОС образовательной программы.

2.3.1.1. Типовые вопросы и задания для экзамена по дисциплине Типовые вопросы для контроля усвоенных знаний:

- 1. Роль строительных машин в строительстве. Базовые машины: требования, предъявляемые к ним и перспективы развития строительного машиностроения.
- 2. Виды рабочего оборудования экскаваторов, назначение. Определение производительности.
- 3.Технико-экономические показатели машин. Виды производительностей строительных машин.
- 4. Машины для подготовительных работ, устройство, принцип действия, область применения. Определение производительности.
- 5. Общая классификация строительных машин. Требования, предъявляемые к строительным машинам.
- 6. Автогрейдеры, устройство, классификация, область применения, производительность.
- 7. Виды и классификация соединений деталей машин. Основы их расчета на прочность.
 - 8. Тракторы, тягачи, область применения, устройство, классификация.
 - 9. Силовое оборудование и привод строительных машин.

- 10. Грузоподъемные машины, назначение, классификация, основные параметры.
- 11. Передачи строительных машин. Назначение и классификация, область применения. Их достоинства и недостатки.
- 12. Краны башенные, устройство, классификация, область применения, определение основных параметров.
- 13. Детали и узлы механических передач (оси, валы, муфты). Основы их расчета на прочность.
- 14. Краны самоходные, классификация, индексация, определение основных параметров.
- 15. Дайте общую схему системы электроавтоматики и опишите назначение элементов, входящих в нее.
- 16. Общие сведения о машинах непрерывного транспорта (конвейеры). Определение производительности.
- 17. Механические передачи, классификация, основные кинематические и силовые зависимости.
- 18. Виды рабочего оборудования экскаваторов, назначение, определение производительности. Индексация экскаваторов.
 - 19. Передачи трением, назначение, область применения, основы расчета.
- 20. Какие приборы средств автоматики используются для контроля и регулирования скорости процесса, измерения размеров изделий и прочности бетона.
- 21. Передачи зацеплением (цепные, червячные, планетарные), назначение, основные параметры.
- 22. Общие сведения о машинах для земляных работ. Свойства грунта, влияющие на работу машин для земляных работ.

23

Общие сведения о машинах горизонтального безрельсового транспорта (автомобили, тракторы, тягачи).

- 24. Простые грузоподъемные машины (домкраты, тали, лебедки, подъемники). Их конструктивные схемы, основные параметры, область применения.
- 25. Классификация кранов, конструктивные схемы, устройство, область применения. Определение производительности.
- 26. Узлы механической трансмиссии (редукторы, реверс). Устройство, принцип действия.
- 27. Одноковшовые экскаваторы, классификация, устройство, область применения, определение производительности.
- 28. Узлы канатно-блочной передачи (канаты, блоки, барабаны, полиспасты). Область применения.
- 29. Экскаваторы, классификация, устройство. Многоковшовые экскаваторы, область применения, производительность.
- 30. Автомобили, область применения, устройство, классификация, понятие о колесной формуле.

- 31. Бульдозеры, устройство, область применения, классификация, определение производительности.
- 32. Общие понятия унификации и стандартизации СМ, агрегатный способ ремонта. Техническое обслуживание, ремонт СМ. Общие требования по технике безопасности при работе СМ.
- 33. Землеройно-транспортные машины, классификация, область применения.
 - 34. Определение производительности.
 - 35. Гидравлическая передача, принцип ее работы, элементы передач.
- 36. Машины для дробления, переработки и сортировки каменных материалов. Способы дробления.
 - 37. Системы управления строительных машин, виды, область применения.
- 38. Машины и оборудование для приготовления и транспортирования бетонов и растворов. Конструктивные схемы, область применения.
- 39. Ходовое оборудование строительных машин. Классификация, область применения.
- 40. Машины для буровых работ и бестраншейной проходки грунта. Область
 - 41. применения, классификация, принцип действия.
- 42. Понятие о кинематических схемах строительных машин, расчет основных зависимостей.
- 43. Скреперы, устройство, работа, классификация, определение производительности.
- 44. Пневматическое ходовое оборудование. Достоинства и недостатки. Основы тягового расчета пневматического ходового оборудования.
 - 45. Партерная схема завода по приготовлению бетонов и растворов.
- 46. Ручные машины, определение, область применения, классификация. Требования, предъявляемые к ручным машинам.
- 47. Машины для земляных работ, классификация, область применения. Влияние свойств грунта на производительность машин.
- 48. Бетоносмесители циклического и непрерывного действия. Основные параметры, область применения. Определение производительности.
- 49. Основы расчета соединений деталей машин. Виды соединений и их применяемость.
 - 50. Вертикальная схема завода по приготовлению бетонов и растворов.
- 51. Каков современный уровень механизации в строительстве? Укажите основные преимущества применения строительных машин.
- 52. Машины для гидромеханизации, буровых работ и бестраншейной проходки грунта. Область применения их в строительном производстве.
- 53. Определение технико-экономических показателей ЗТМ и пути повышения эффективности работы этих машин.
- 54. Лебедки строительные, кинематические схемы, область применения, расчет.
- 55. Какие различают категории производительностей строительных машин. Дайте определение каждой категории и приведите расчетные формулы.

- 56. Схемы и способы дробления каменных материалов. Щековые дробилки,
 - 57. схема действия и определение основных параметров.
- 58. Что такое механизация, комплексная механизация и автоматизация в строительном производстве? Какова роль СМ в строительстве?
- 59. Погрузочно-разгрузочные машины. Назначение, основные типы, конструктивные схемы. Определение производительности одноковшовых погрузчиков.

Типовые вопросы и практические задания для контроля освоенных умений и владений:

Задача 1. Определение производительности башенного крана.

Задание: определить требуемую высоту подъема крюка; подобрать марку башенного крана; определить продолжительность рабочего цикла без совмещения и при совмещении операций;

определить сменную производительность крана;

определить эффективность совмещения операций.

Задача 2. Тяговый расчет и определение производительности бульдозера.

Задание: записать условия движения бульдозера без буксования, рассчитать силу тяги, развиваемую двигателем трактора, определить силу тяги по сцеплению, определить величины сопротивлений при резании и транспортировании грунта бульдозером, оснащенным неповоротным отвалом с учетом уклона местности, проверить выполнение условий движения и определить эксплуатационную сменную производительность бульдозера.

2.3.1.2. Шкалы оценивания результатов обучения на экзамене

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь*, *владеть* заявленных компетенций проводится по 4-х балльной шкале оценивания.

Типовые шкала и критерии оценки результатов обучения при сдаче экзамена для компонентов *знать*, *уметь*, *владеть* приведены в общей части ФОС образовательной программы.

3. Критерии оценивания уровня сформированности компонентов и дисциплинарных компетенций

3.1. Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля при экзамене считается, что полученная оценка за компонент проверяемой в билете компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Типовые критерии и шкалы оценивания уровня сформированности компонентов компетенций приведены в общей части ФОС образовательной программы.

3.2.Оценка уровня сформированности компетенций

Общая оценка уровня сформированности всех компетенций проводится

путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации в форме экзамена используются типовые критерии, приведенные в общей части ФОС образовательной программы.