Министерство науки и высшего образования Российской Федерации Лысьвенский филиал

федерального государственного автономного образовательного учреждения высшего образования

«Пермский национальный исследовательский политехнический университет»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине

«Основы инженерной геологии и механики грунтов» Приложение к рабочей программе дисциплины

Направление подготовки: 08.03.01 Строительство

Направленность (профиль)

Промышленное и гражданское строительство

образовательной

программы:

Квалификация выпускника: «Бакалавр»

Выпускающая кафедра: Технических дисциплин

Форма обучения: Очная, заочная

Курс: 2 Семестр: 3,4

Трудоёмкость:

Кредитов по рабочему учебному плану: 5 ЗЕ Часов по рабочему учебному плану: 180 ч.

Форма промежуточной аттестации:

Зачет: 3 семестр

Дифференцированный зачёт: 4 семестр

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине является частью (приложением) к рабочей программе дисциплины. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине разработан в соответствии с общей частью фонда средств ДЛЯ проведения промежуточной аттестации образовательной программы, которая устанавливает систему оценивания результатов промежуточной аттестации и критерии выставления оценок. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине **устанавливает** формы И процедуры текущего контроля успеваемости промежуточной аттестации обучающихся по дисциплине.

1. Перечень контролируемых результатов обучения по дисциплине, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины запланировано в течение двух семестров (3, 4-го семестров учебного плана). семестрах лекционные, лабораторные предусмотрены аудиторные работы, также работа студентов. рамках освоения **учебного** самостоятельная В материала формируются компоненты компетенций знать, уметь, дисциплины владеть, указанные в РПД, которые выступают в качестве контролируемых результатов обучения по дисциплине (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала, сдаче отчетов по лабораторным работам, зачета и дифференцированного зачета. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

3.1 Знать - главнейшие горные породы, используемые		В	ид контр	оля		
	Текущий	Рубе	жный	Ито	говый	
	то	ОЛР	Т/КР	Зачет	Диффере нцирован ный зачёт	
	нные знани	Я			_	
3.1 Знать	TO		T	TB	TB	
- главнейшие горные породы, используемые			КР			
как грунты основания и как строительные						
материалы;						
- состав работ по инженерным изысканиям в						
соответствии с поставленной задачей;						
- методы проведения инженерных изысканий,						
с учетом морфологических, литологических,						
гидрогеологических свойств площадки						
строительства;						
- основные методы расчета напряженного						
состояния грунтового массива;						
- основные методы расчета прочности						
грунтов и осадок.						
Освое	нные умени	Я				
У.1 Уметь		ОЛР	КР	П3	П3	
- пользоваться специальной, нормативной и						
справочной литературой, касающейся						

проведения геологических работ;					
- использовать полевые методы определения					
морфологических, литологических,					
гидрогеологических свойств площадки					
строительства, определения наличия опасных					
геологических процессов на площадке					
строительства;					
- пользоваться методами организации,					
проведения и документирования инженерно-					
геологических изысканий;					
- читать геологические, гидрогеологические,					
геоморфологические, инженерно-					
геологические карты;					
- применять методы оценки геологической					
пригодности площадки строительства для					
обеспечения механической безопасности					
зданий;					
- оценивать устойчивость грунтов в					
основании сооружений и откосах, а также					
давление на ограждающие конструкции.					
	енные владе		T	T	
В.1 Владеть		ОЛР		П3	П3
- методами проведения инженерных					
изысканий, определения морфологических,					
литологических, гидрогеологических свойств					
площадки строительства;					
- методами проведения инженерных					
изысканий, геологических работ и измерений					
в соответствии с техническим заданием при					
проектировании, строительстве и					
эксплуатации сооружений;					
- методами оценки результатов инженерно-					
геологических изысканий в интересах					
строительства производства;					
- методами оценки геологической					
пригодности площадки строительства для					
обеспечения механической безопасности					
зданий и сооружений;					
- методами проведения инженерных					
изысканий и оценки грунтового основания,					
технологией проектирования фундаментов и					
подземных конструкций в соответствии с					
техническим заданием.					
С – собеседование по теме; ТО –теоретическ	ий опрос: К	3 – компл	ексное зад	дание (инди	видуальное

C — собеседование по теме; TO —теоретический опрос; K3 — комплексное задание (индивидуальное задание); OЛP — отчет по лабораторной работе; T/KP — рубежное тестирование (контрольная работа); TB — теоретический вопрос; TA — практическое задание.

Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в форме зачета в 3 семестре и дифференцированного зачета в 4 семестре, проводимая с учетом результатов текущего и рубежного контроля.

2. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной эффективности учебного процесса, управление процессом формирования заданных компетенций обучаемых, повышение мотивации к учебе и предусматривает оценивание хода освоения дисциплины. В соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования — программам бакалавриата, специалитета и магистратуры в ПНИПУ предусмотрены следующие виды и периодичность текущего контроля успеваемости обучающихся:

- входной контроль, проверка исходного уровня подготовленности обучаемого и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента «знать» заданных компетенций) на каждом групповом занятии и контроль посещаемости лекционных занятий;
- промежуточный и рубежный контроль освоения обучаемыми отдельных компонентов «знать», «уметь» заданных компетенций путем компьютерного или бланочного тестирования, контрольных опросов, контрольных работ (индивидуальных домашних заданий), защиты отчетов по лабораторным работам, рефератов, эссе и т.д.

Рубежный контроль по дисциплине проводится на следующей неделе после прохождения модуля дисциплины, а промежуточный — во время каждого контрольного мероприятия внутри модулей дисциплины;

- межсессионная аттестация, единовременное подведение итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы;
 - контроль остаточных знаний.

2.1. Текущий контроль усвоения материала

Текущий контроль усвоения материала в форме собеседования или выборочного теоретического опроса студентов проводится по каждой теме. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений (табл. 1.1) в форме защиты лабораторных работ и рубежных контрольных работ, тестирования.

2.2.1. Защита лабораторных работ

Всего запланировано 12лабораторных работ. Типовые темы лабораторных работ приведены в РПД.

Защита лабораторных работ проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.2.2. Рубежное тестирование

Согласно РПД запланировано 1 рубежное тестирование после освоения студентами тем дисциплины «Организация, состав, методы и технические средства

инженерно-геологических изысканий» дисциплины.

Типовые задания теста (см в Приложении 1).

Типовые шкала и критерии оценки результатов рубежного тестирования приведены в общей части ФОС образовательной программы.

2.2.3. Рубежная контрольная работа

Согласно РПД запланировано 2 рубежные контрольные работы (КР) после освоения студентами лекционного и лабораторного материала. Первая КР - «Теоретические основы геологии», вторая КР - «Основные закономерности механики грунтов».

Типовые задания контрольной работы (см. Приложение 2)

2.3. Промежуточная аттестация

Допуск к промежуточной аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются успешная сдача всех отчетов по лабораторным работами положительная интегральная оценка по результатам текущего и рубежного контроля.

2.3.1. Процедура промежуточной аттестации без дополнительного аттестационного испытания

Промежуточная аттестация в 3 семестре проводится в форме зачета. Промежуточная аттестация в 4 семестре проводится в форме дифференцированного зачета.

Допуск к промежуточной аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются успешная сдача всех лабораторных работ и положительная интегральная оценка по результатам текущего и рубежного контроля.

2.3.2. Процедура промежуточной аттестации с проведением аттестационного испытания

В отдельных случаях (например, в случае переаттестации дисциплины) промежуточная аттестация в виде зачета и дифференцированного зачета по дисциплине может проводиться с проведением аттестационного испытания по билетам. Билет содержит теоретические вопросы (ТВ) для проверки усвоенных знаний, практические задания (ПЗ) для проверки освоенных умений и комплексные задания (КЗ) для контроля уровня приобретенных владений всех заявленных компетенций.

Билет формируется таким образом, чтобы в него попали вопросы и практические задания, контролирующие уровень сформированности *всех* заявленных компетенций.

2.3.2.1. Типовые вопросы и задания для зачета и дифференцированного зачета по дисциплине

Типовые вопросы для контроля усвоенных знаний, типовые вопросы и практические задания для контроля освоенных умений и приобретенных владений (см. Приложение 2).

2.3.2.2. Шкалы оценивания результатов обучения на зачете

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметьи владеть* заявленных компетенций

проводится в режиме «зачтено» и «не зачтено».

Типовые шкала и критерии оценки результатов обучения при сдаче зачёта для компонентов *знать*, *уметь и владеть* приведены в общей части ФОС образовательной программы.

2.3.2.3. Шкалы оценивания результатов обучения на диф.зачете

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь*, *владеть* заявленных компетенций проводится по 4-х балльной шкале оценивания.

Типовые шкала и критерии оценки результатов обучения при сдаче зачета для компонентов *знать*, *уметь и владеть* приведены в общей части ФОС образовательной программы.

3. Критерии оценивания уровня сформированности компонентов и дисциплинарных компетенций

3.1. Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля при зачете и диф.зачете считается, что полученная оценка за компонент проверяемой в билете компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации в форме зачета и диф.зачета используются типовые критерии, приведенные в общей части ФОС образовательной программы.

Типовые задания тестов

Пример 1

- 1. Магматические породы образуются
- * при застывании магмы.
- 2. Вулканический туф представляет собой
- * а) вулканический пепел.
- 3. Удельный вес грунта это отношение его
- * массы к объему.
- 4. Возраст горных пород на геологических картах отображают
- а) только цветом
- б) текстом (кириллицей)
- в) только буквенными индексами
- * г) цветом и буквенно-цифровыми индексами.
- 5. Показатели основных механических свойств глинистых грунтов
- а) пластичность, набухание, водопроницаемость
- * б) угол внутреннего трения, удельное сцепление, модуль деформации
- в) показатель водонасыщения, число пластичности, липкость
- г) модуль деформации, пластичность, плотность

Выбрать строку только со всеми правильными ответами.

- 6. Компрессионные испытания глинистых грунтов позволяют определить
- * в) модуль общей деформации.
- 7. Число пластичности является классификационным показателем и позволяет выделить следующие разновидности глинистых грунтов
- а) супесь, песок, гравий
- б) песок, торф, дресва
- * в) супесь, суглинок, глина
- г) глина, известняк, сланец

Выбрать строку только со всеми правильными ответами.

8. Модуль общей деформации грунтов измеряется в * МПа.
9. Удельное сцепление грунтов измеряется в * МПа.
10. Наиболее вероятно встретить ультрапресные подземные воды в районе широт * северных.
11. Линия отображения положение уровня грунтовых вод геологическом разрезе: * штриховая.
12. Причины развития оползней а) обезвоживание склона, размножение растительности * б) подработка, пригрузка, обводнение склона

г) химическое воздействие на склон, строительство под склоном

Выбрать строку только со всеми правильными ответами.

инженерно-

- 13. Суффозией называют
- * вынос частиц грунта.
- 14. Методы защиты берегов рек от подмыва

д) засуха, затяжная зима, магнитные бури

- * а) наброска камней, фашин, забивка свай, облицовка.
- 15. Элементы речной долины
- * русло, пойма, террасы.
- 16. Для количественной оценки силы землетрясения используется величина * магнитуда.
- 17. Просадочные деформации проявляются в следующих грунтах:

- * лессовых.
- 18. Цель инженерно-геологических изысканий для обоснования предпроектной документации:
- * а) оценка инженерно-геологических условий
- б) подготовка необходимого материала для окончательного варианта компоновки объекта
- в) уточнение и детализация инженерно-геологических условий под отдельными объектами
- г) определение максимальной глубины бурения скважин.
- 19. Задачи инженерно-геологической разведки
- * а) оценка условий залегания грунтов и их свойств грунтов в пределах строительных объектов
- б) оценка состава и распространения грунтов разных типов в пределах выбранной площадки строительства
- в) составление региональных инженерно-геологических карт
- г) анализ развития инженерно-геологических процессов на региональном уровне.
- 20. Геологическими документами буровых работ являются:
- * буровой журнал.

Пример 2

- 1. Число пластичности измеряется в
- * процентах
- 2. Модуль общей деформации грунтов величина, связывающая напряжения с
- * деформациями.
- 3. Удельное сцепление грунтов обозначается буквой
- * c.
- 4. Ультрапресные подземные воды характеризуются слабой
- * минерализацией.

- 5. Линия отображения положение уровня грунтовых вод в инженерно-геологическом разрезе:
- * штриховая.
- 6. Подработка влияет на развитие
- * оползней
- 7. Суффозией называют
- * вынос частиц грунта.
- 8. Методы защиты берегов рек от подмыва
- * а) наброска камней, фашин, забивка свай, облицовка.
- 9. Элементы речной долины
- * русло, пойма, террасы.
- 10. Для количественной оценки силы землетрясения используется величина
- * магнитуда.
- 11. Просадочные деформации проявляются в следующих грунтах:
- * лессовых.
- 12. Цель инженерно-геологических изысканий для обоснования предпроектной документации:
- * а) оценка инженерно-геологических условий
- б) подготовка необходимого материала для окончательного варианта компоновки объекта
- в) уточнение и детализация инженерно-геологических условий под отдельными объектами
- г) определение максимальной глубины бурения скважин.
- 13. Задачи инженерно-геологической разведки
- * а) оценка условий залегания грунтов и их свойств грунтов в пределах строительных объектов

- б) оценка состава и распространения грунтов разных типов в пределах выбранной площадки строительства
- в) составление региональных инженерно-геологических карт
- г) анализ развития инженерно-геологических процессов на региональном уровне.
- 14. Геологическими документами буровых работ являются:
- * буровой журнал.
- 15. Магматические горные породы это конечные продукты
- * магматической деятельности.
- 16. Вулканический туф это осадочная
- * а) горная порода.
- 17. Компрессионные испытания глинистых грунтов позволяют определить
- * в) модуль общей деформации.
- 18. Возраст горных пород на геологических картах отображают
- а) только цветом
- б) текстом (кириллицей)
- в) только буквенными индексами
- * г) цветом и буквенно-цифровыми индексами.
- 19. Показатели основных механических свойств глинистых грунтов
- а) пластичность, набухание, водопроницаемость
- * б) угол внутреннего трения, удельное сцепление, модуль деформации
- в) показатель водонасыщения, число пластичности, липкость
- г) модуль деформации, пластичность, плотность

Выбрать строку только со всеми правильными ответами.

20. Коэффициент внутреннего трения это показатель сопротивления

* сдвигу.

Типовые задания первой КР:

1. Определить вид крупнообломочного или песчаного грунта в зависимости от гранулометрического состава из таблицы.

Характерный раз- мер частиц, мм	Содержание частиц крупнее характерного размера по массе гр. для вариантов по последней цифре зачетки										
	0	1	2	3	4	5	6	7	8	9	
200	100	50	200	50	100	200	50	200	250	100	
10	200	100	250	50	150	180	50	100	550	100	
2	50	50	150	50	200	200	50	100	50	100	
0,5	400	300	150	200	200	150	50	200	50	100	
0,25	150	150	150	150	200	150	200	300	50	300	
0,1	100	350	100	500	150	120	600	200	50	300	

2. Определить величину сжимающих напряжений под центром и под средней длинной стороны загруженного прямоугольника размером 1 х bм на глубине zм от поверхности при внешней нагрузке интенсивностью р МПа, варианты исходных данных в таблице.

№ варианта	b, м	1, м	Z, M	Р, МПа
0	2	10	1,2	0,20
1	1,4	9,5	1,3	0,25
2	1,6	9	1,5	0,30
3	1,8	8,5	1,8	0,35
4	2,1	8	2,1	0,40
5	2,3	7,5	2,3	0,45
6	2,5	7	2,5	0,50
7	2,7	6,5	2,8	0,55
8	3	6	3	0,60
9	3,2	8	1,9	0,65

Типовые вопросы и задания для зачета по дисциплине

Типовые вопросы для контроля усвоенных знаний:

- 1. Геология определение.
- 2. Грунтоведение определение.
- 3. Свойства грунтов.
- 4. Классификация грунтов.
- 5. Техническая мелиорация грунтов
- 6. Вода в грунтах.
- 7. Классификации воды в грунтах.
- 8. Геологические процессы (выветривание, деятельность ветра и атмосферных осадков).
- 9. Геологические процессы при строительстве (просадочные явления в лессовых породах; деформация горных пород над подземными горными выработками)
- 10. Инженерно-геологические изыскания (этапы, типы горных выработок, геологические карты и разрезы)

Типовые задания для контроля приобретенных умений и владений:

Для предложенных образцов минеральной коллекции:

- определить форму минеральных агрегатов;
- определить форму выделений.

Типовые вопросы и задания для дифференцированного зачета по дисциплине

Типовые вопросы для контроля усвоенных знаний:

- 1. Структурно-неустойчивые грунты. Основные свойства.
- 2. Модель грунта.
- 3. Основные характеристики грунта.
- 4. Производные характеристики грунта.
- 5. Классификационные характеристики грунта.
- 6. Фильтрационные свойства грунта. Закон Дарси.
- 7. Прочностные свойства грунта. Закон Кулона.
- 8. Деформация грунтового массива. Основные фазы.
- 9. Модели уплотнения грунтов. Компрессионная кривая. 10. Модуль общей деформации. Методы определения.
- 11. Предельное напряженное состояние грунтов. Сопротивление сдвигу.
- 12. Распространение сжимающих напряжений в грунтовом массиве в случае действия сосредоточенной силы (задача Буссинеску).
- 13. Распространение сжимающих напряжений в грунтовом массиве в случае действия нескольких сосредоточенных сил.
- 14. Распределение напряжений под полосовой нагрузкой (задача Фламана).
- 15. Метод угловых точек.
- 16. Распределение напряжений от собственного веса грунта.
- 17. Фазы напряженного состояния грунтов при изменении нагрузки.
- 18. Предельное равновесие грунтов.
- 19. Критические нагрузки на грунт.

- 20. Сеть линий скольжения в грунте.
- 21. Устойчивость откосов и склонов.
- 22. Определение давления грунта на подпорные стенки.
- 23. Методы определения деформаций и осадок грунтов.
- 24. Метод общих упругих деформаций грунтов.
- 25. Метод послойного суммирования напряжений.
- 26. Теория фильтрационной консолидации грунтов.
- 27. Реология грунтов. Три направления (задачи) исследований поведения грунта под нагрузкой.
- 28. Релаксация напряжений и длительная прочность грунтов.

Типовые задания для контроля приобретенных умений и владений:

1. Определить сжимающие напряжения, лежащие на оси фундамента согласно своего варианта. Построить эпюру сжимающих напряжений от действия равномерно распределенной нагрузки.

Варианты	1	2	3	4	5
Величина равномерно рас- пределенной нагрузки р, МПа	0,4	0,5	0,2	0,3	0,4
Глубина от поверхности зем- ли z, м	2,0	3,0	2,5	2,0	3,0
Размеры фундамента, м	2x2	3x3	4x4	2x2	3x3

2. Найти значение начальной критической нагрузки (начало возникновения зон сдвига) на грунт под ленточным фундаментом.

Варианты	1	2	3	4	5
Ширина фундамента b, м	2,0	2,0	3,0	3,0	2,0
Величина заглубления фундамента h, м	1,5	1,5	2,0	1,5	1,5
плотность грунта у, кН/м ³	18	19	19	17	18
угол внутреннего трения ф, град	23	25	24	. 27	25
Связность С, кПа	21	20	20	17	19

3. Найти значение предельной высоты откоса.

Варианты	1	2	3	4	5
заложение откоса	1:2	1:1,5	1:2	1:1,5	1:2
Коэффициент устойчиво- сти откоса	1,5	2,0	2,0	1,5	1,5
плотность грунта ү, кН/м3	18	19	19	17	18
угол внутреннего трения ф, град	23	25	24	27	25
Связность С, кПа	11	12	10	17	16