Министерство науки и высшего образования Российской Федерации Лысьвенский филиалфедерального государственного автономного образовательного учреждения высшего образования

«Пермский национальный исследовательский политехнический университет

УТВЕРЖДАЮ

Доцент с исп. обязанностей

зав кафедрой ТД

т.О. Сошина

«<u>Of</u>»<u>06</u> 2024 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по учебной дисциплине

ЭЛЕМЕНТЫ ВЫСШЕЙ МАТЕМАТИКИ

Приложение к рабочей программе учебной дисциплины

основной профессиональной образовательной программы подготовки специалистов среднего звена по специальности СПО 09.02.07 Информационные системы и программирование

(базовая подготовка)

Фонд оценочных средств разработан на основе:

Федерального государственного образовательного стандарта среднего профессионального образования, утверждённого приказом Министерства образования и науки Российской Федерации «9» декабря 2016 г. № 1547 по специальности 09.02.07 Информационные системы и программирование;

– рабочей программы учебной дисциплины Элементы высшей математики, утвержденной « Of » 06 2024 г.

Разработчик: преподаватель высшей категории Е.Л.Федосеева

Фонд оценочных средств рассмотрен и одобрен на заседании предметной (цикловой) комиссии Ecmecmbehohayhhax дисциплин (ПЦК ЕНД) « 06 » 02 2024 г., протокол № 6.

Председатель ПЦК ЕНД

М.Н. Апталаев

ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

В результате освоения учебной дисциплины Элементы высшей математики обучающийся должен обладать предусмотренными ФГОС по специальности СПО 09.02.07 Информационные системы и программирование следующими результатами обучения: знаниями и умениями, которые формируют общие компетенции.

Код ОК, ЛР	Умения	Знания
ОК 01	– выполнять операции над	- основы математического анализа,
ОК 05	матрицами и решать системы	линейной алгебры и аналитической
ЛР 6	линейных уравнений;	геометрии;
ЛР 12	– решать задачи, используя уравнения прямых и кривых второго	 основы дифференциального и интегрального исчисления;
ЛР 13	порядка на плоскости;	– основы теории комплексных чисел
ЛР 14	– применять методы	
ЛР 17	дифференциального и интегрального	
	исчисления;	
	– решать дифференциальные	
	уравнения;	
	- пользоваться понятиями теории	
	комплексных чисел	

Перечень общих компетенций элементы, которых формируются в рамках дисциплины:

Ко	д ОК	Наименование ОК		
o	K 01	Выбирать способы решения задач профессиональной деятельности применительно к		
		различным контекстам		
0	K 05	Осуществлять устную и письменную коммуникацию на государственном языке		
		Российской Федерации с учетом особенностей социального и культурного контекста		

После изучения учебной дисциплины обучающийся должен демонстрировать следующие личностные результаты:

Код ЛР	Характеристика ЛР			
WD (Демонстрирующий навыки анализа и интерпретации информации из различных			
источников с учетом нормативно-правовых норм				
ЛР 12	Активно применяющий полученные знания на практике			
WD 12	Способный анализировать производственную ситуацию, быстро принимать			
ЛР 13	решения			
Работать в коллективе и команде, эффективно взаимодействовать с коллег				
руководством, клиентами				
ΠD 17	Проявлять доброжелательность к окружающим, деликатность, чувство такта и			
ЛР 17	готовность оказать услугу каждому кто в ней нуждается			

1 МЕТОДЫ И ФОРМЫ КОНТРОЛЯ ОЦЕНИВАНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

- 1 Для текущего и рубежного контроля освоения дисциплинарных компетенций используются следующие методы:
 - устный опрос,
 - тестирование,
 - наблюдение и оценка результатов практических занятий;
 - экспертная оценка результатов самостоятельной работы;
 - экспертная оценка по результатам наблюдения за деятельностью обучающегося в процессе освоения учебной дисциплины.
- 2 Формой промежуточной аттестации по учебной дисциплине является **экзамен**, который проводятся в сроки, установленные учебным планом и определяемый календарным учебным графиком образовательного процесса.

Таблица 1 – Методы и формы контроля и оценивания элементов учебной дисциплины

D=0.404= 4446	Методы	Методы и формы контроля и оценивания		
Элемент учебной дисциплины	Текущий контроль	Рубежный контроль	Промежуточная аттестация	
Раздел 1 Линейная алі	ебра			
Тема 1.1	Устный опрос	Тестирование		
Матрица и действия над ними	Наблюдение и оценка результатов			
Тема 1.2.	практических занятий			
Системы линейных уравнений	Экспертная оценка результатов самостоятельной работы			
	Экспертная оценка по результатам наблюдения за деятельностью обучающегося в процессе освоения учебной дисциплины			
Раздел 2 Комплексные	числа			
Тема 2.1	Устный опрос	Тестирование		
Комплексные числа и действия над ними	Наблюдение и оценка результатов практических занятий			
	Экспертная оценка по результатам наблюдения за			

	наятану укастуус		
	деятельностью		
	обучающегося в		
	процессе освоения		
Раздел 3 Геометрия	учебной дисциплины		
	Устный опрос	Тестирование	
Тема 3.1	_	тестирование	
Векторы на	Наблюдение и		
плоскости и в	оценка результатов		
пространстве и	практических		
действия над ними	занятий		
	Экспертная оценка		
Тема 3.2	по результатам		
Аналитическая	наблюдения за		
геометрия на	деятельностью		
плоскости	обучающегося в		
	процессе освоения		
	учебной дисциплины		
Раздел 4 Математичес			
		Тостирования	
Тема 4.1	Устный опрос	Тестирование	
Теория пределов	Наблюдение и		
	оценка результатов		
Тема 4.2	практических		
Дифференциальное	занятий		
исчисление функции	Экспертная оценка		
одной	результатов		
действительной	самостоятельной		
переменной	работы		
Тема 4.3	Экспертная оценка		
Интегральное	по результатам		
исчисление функции	наблюдения за		
одной	деятельностью обучающегося в		
действительной	обучающегося в процессе освоения		
переменной	учебной дисциплины		
Тема 4.4	у теоном диециплины		
Дифференциальное			
исчисление функции			
нескольких			
действительных			
переменных			
Тема 4.5			
Интегральное			
исчисление функции			
нескольких			
действительных			
переменных			
Тема 4.6			
Дифференциальные			
r t-T T - P t	1		

уравнения			
Раздел 5 Ряды			
Тема 5.1	Устный опрос	Тестирование	
Числовые ряды Тема 5.2 Функциональные ряды	Наблюдение и оценка результатов практических занятий Экспертная оценка по результатам наблюдения за деятельностью обучающегося в процессе освоения учебной дисциплины		
Форма контроля			Экзамен

Текущий контроль усвоения материала

Текущий контроль усвоения материала проводится в форме устного опроса по темам учебной дисциплины.

Наблюдение и оценка результатов практических занятий

Типовые темы практических занятий приведены в РПД. Комплект заданий на практические занятия приведены в МУ по ПЗ по учебной дисциплине.

Выполнение практических заданий проводится индивидуально каждым обучающимся в форме проверочной работы.

Экспертная оценка результатов самостоятельной работы

Задания для самостоятельной работы приведены в МУ по СРС по учебной дисциплине.

Качественная оценка определения научного кругозора, степенью овладения методами теоретического исследования и развития самостоятельности мышления студента.

Способом проверки качества организации самостоятельной работы студентов является контроль:

- корректирующий (может осуществляться во время индивидуальных консультаций по поводу выполнения формы самостоятельной работы);
- констатирующий (по результатам выполнения специальных форм самостоятельной работы);
 - самоконтроль (осуществляется самим студентом);
- текущий (в ходе выполнения различных форм самостоятельной работы, установленных рабочей программой);

— промежуточный (оценка результата обучения как итога выполнения студентом всех форм самостоятельной работы).

Экспертная оценка по результатам наблюдения за деятельностью обучающегося в процессе освоения учебной дисциплины

Осуществляется как наблюдение за процессом деятельности обучающегося в режиме реального времени. Является качественной оценкой освоения учебной дисциплины, учитываемой при промежуточной аттестации.

Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений проводится в форме тестирования (после изучения разделов учебной дисциплины).

2 РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ, ПОДЛЕЖАЩИЕ ПРОВЕРКЕ НА ДИФФЕРЕНЦИРОВАННОМ ЗАЧЕТЕ

В результате промежуточной аттестации по учебной дисциплине осуществляется комплексная проверка следующих умений и знаний:

Результаты обучения (освоенные умения, усвоенные знания)	Показатели оценки результатов		
Умение:			
 выполнять операции над матрицами и решать системы линейных уравнений правильно выполняет опера матрицами и решать системы уравнений 			
 решать задачи, используя уравнения прямых и кривых второго порядка на плоскости 			
 применять методы дифференциального и интегрального исчисления 	Правильно применяет методы дифференциального и интегрального исчисления при решении задач		
 решать дифференциальные уравнения 	Правильно решает дифференциальные уравнения		
 пользоваться понятиями теории комплексных чисел 	Умеет пользоваться понятиями теории комплексных чисел при решении задач		
Знание:			
 основы математического анализа, линейной алгебры и аналитической геометрии 	Знает понятие математического анализа, линейной алгебры и аналитической геометрии		
 основы дифференциального и интегрального исчисления 	Знает понятия дифференциального и интегрального исчисления		
- основы теории комплексных чисел	Знает понятие комплексных чисел		

3 КРИТЕРИИ ОЦЕНКИ

Критерии устного ответа

Критерии оценки	Оценка
Дан полный, развернутый ответ на поставленный вопрос, показана совокупность осознанных знаний по дисциплине, доказательно раскрыты основные положения вопросов; в ответе прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений. Знания по предмету демонстрируется на фоне понимания его в системе данной науки и междисциплинарных связей. Ответ изложен литературным языком с использованием современной технической терминологии. Могут быть допущены недочеты в определении понятий, исправленные студентом самостоятельно в процессе ответа	Отлично
Дан полный, развернутый ответ на поставленный вопрос, показано умение выделить существенные и несущественные признаки, причинно-следственные связи. Ответ четко структурирован, логичен, изложен литературным языком с использованием современной технической терминологии. Могут быть допущены некоторые неточности или незначительные ошибки, исправленные студентом с помощью преподавателя	Хорошо
Дан недостаточно полный и недостаточно развернутый ответ. Логика и последовательность изложения имеют нарушения. Допущены ошибки в раскрытии понятий, употреблении терминов. Студент не способен самостоятельно выделить существенные и несущественные признаки и причинно-следственные связи. В ответе отсутствуют выводы. Умение раскрыть значение обобщенных знаний не показано. Речевое оформление требует поправок, коррекции	Удовлетворительно
1) Ответ представляет собой разрозненные знания с существенными ошибками по вопросу. Присутствуют фрагментарность, нелогичность изложения. Студент не осознает связь обсуждаемого вопроса с другими объектами дисциплины. Отсутствуют выводы, конкретизация и доказательность изложения. Речь неграмотная, техническая терминология не используется. Дополнительные и уточняющие вопросы преподавателя не приводят к коррекции ответа студента. 2) Ответ на вопрос полностью отсутствует. 3) Отказ от ответа.	Неудовлетворительно

Критерии оценки практических занятий

Критерии оценки	Оценка
 практическое задание выполнено в установленный срок с использованием рекомендаций преподавателя 	
 показан высокий уровень знания изученного материала по заданной 	
теме	
проявлен творческий подход	Отлично
– умение глубоко анализировать проблему и делать обобщающие	
практико-ориентированные выводы	
– работа выполнена без ошибок и недочетов или допущено не более	
одного недочета	
– практическое задание выполнено в установленный срок с	Хорошо

использованием рекомендаций преподавателя – показан хороший уровень владения изученным материалом по заданной теме	
 – работа выполнена полностью, но допущено в ней: а) не более одной негрубой ошибки и одного недочета б) или не более двух недочетов 	
 практическое задание выполнено в установленный срок с частичным использованием рекомендаций преподавателя продемонстрированы минимальные знания по основным темам изученного материала выполнено не менее половины работы или допущены в ней: а) не более двух грубых ошибок; б) не более одной грубой ошибки и одного недочета; в) не более двух-трех негрубых ошибок; г) одна негрубая ошибка и три недочета; д) при отсутствии ошибок, 4-5 недочетов 	Удовлетворительно
 число ошибок и недочетов превосходит норму, при которой может быть выставлена оценка «удовлетворительно» или если правильно выполнено менее половины задания если обучающийся не приступал к выполнению задания или правильно выполнил не более 10 процентов всех заданий 	Неудовлетворительн о

Критерии оценивания тестов

Отлично	Хорошо	Удовлетворительно	Неудовлетворительно
86 - 100	70 - 85	51 69	68 и менее

Критерии результатов самостоятельной работы

При экспертной оценке результатов самостоятельной работы учитываются такие критерии::

- Глубина освоения знаний
- Источники информации
- Качество выполнения работы
- Самостоятельность изложения
- Творчество и личный вклад
- Соблюдение правил оформления

Экспертная оценка по результатам наблюдения за деятельностью обучающегося в процессе освоения учебной дисциплины

Интегральная качественная оценка освоения учебной дисциплины, учитываемая при промежуточной аттестации.

Критерии оценки промежуточной аттестации (экзамен)

Экзамен проводится в тестовой форме.

К сдаче экзамена допускаются обучающиеся, выполнившие задания практических занятий и получившие оценки не ниже «удовлетворительно» по результатам текущей аттестации.

Основой для определения оценки на экзамене служит объём и уровень усвоения обучающимися материала, предусмотренного рабочей программой учебной дисциплины «Элементы высшей математики».

Критерии оценивания тестов

Отлично	Хорошо	Удовлетворительно	Неудовлетворительно
86 - 100	70 - 85	51 - 69	50 и менее

4 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО И РУБЕЖНОГО КОНТРОЛЯ ЗНАНИЙ И УМЕНИЙ

Задания для оценки освоения

Раздела 1 Линейная алгебра

Обучающийся должен

знать:

- основы математического анализа, линейной алгебры и аналитической геометрии;

уметь:

- выполнять операции над матрицами и решать системы линейных уравнений.

Типовые вопросы для устного опроса

- 1. Что называется матрицей?
- 2. Какие матрицы называются равными?
- 3. Что называется главной диагональю матрицы?
- 4. Какие матрицы называются диагональной?
- 5. Какие матрицы называются единичной?
- 6. Какие матрицы называются треугольной?
- 7. Что значит транспонировать матрицу?
- 8. В чем состоит обязательное условие существования произведения матриц?
- 9. Что называется определителем матрицы?
- 10. Как вычислить определитель третьего порядка по правилу треугольников?
- 11. Перечислите свойства определителей?
- 12. Какая система называется совместной?
- 13. Какая система называется несовместной?
- 14. Запишите формулу Крамера
- 15. В каком случае система имеет множество решений?
- 16. Опишите метод Гаусса

Типовой тест Раздела 1

Условия выполнения задания

- тест выполняется в аудитории во время практических занятий;
- для выполнения теста необходимо следующее оборудование: бланки ответов, ручки, карточки с тестами (для выполнения электронного варианта теста: компьютерный класс, тестировщик).

Инструкция: на выполнение теста отводится 20 минут, внимательно прочитайте вопрос, выберите один вариант ответа, ответы занесите в бланк ответов

Вариант 1

1. Даны матрицы $A = \begin{pmatrix} -1 & 0 \\ 3 & 4 \end{pmatrix}$ и $B = \begin{pmatrix} -2 & 1 \\ -1 & 0 \end{pmatrix}$. Тогда матрица $A \cdot B$ равна ... A) $\begin{pmatrix} 2 & -1 \\ -10 & 3 \end{pmatrix}$ B) $\begin{pmatrix} 2 & 0 \\ -3 & 0 \end{pmatrix}$ B) $\begin{pmatrix} 2 & 1 \\ -2 & -3 \end{pmatrix}$ Γ) $\begin{pmatrix} -1 & 0 \\ -1 & 0 \end{pmatrix}$ 2. Определитель $\begin{vmatrix} 2 & 0 & 3 \\ 0 & 1 & 2 \\ 1 & 0 & 2 \end{vmatrix}$ равен ... A) 0 B) 1 Γ) 3 3. Даны матрицы $A = \begin{pmatrix} 2 & 1 \\ -3 & -4 \end{pmatrix}$ и $B = \begin{pmatrix} -1 & 0 \\ 1 & 2 \end{pmatrix}$, тогда $A + 3 \cdot B = \dots$ A) $\begin{pmatrix} -1 & 1 \\ 0 & 2 \end{pmatrix}$ B) $\begin{pmatrix} 5 & 1 \\ 0 & 2 \end{pmatrix}$ C) $\begin{pmatrix} -1 & 1 \\ 0 & -2 \end{pmatrix}$ 4. Если определитель второго порядка $\begin{vmatrix} 7 & -3 \\ x & -5 \end{vmatrix} = -14$, то $x = \dots$

Ответ: ____ 5. Система линейных уравнений $\begin{cases} x-z=0 \\ x+z=4 \\ x+y+z=2 \end{cases}$ имеет решение ...

A)
$$x = 2$$
; $y = -2$; $z = 2$
B) $x = 2$; $y = 2$; $z = 2$
C) $x = 2$; $y = -2$; $z = -2$

x = 2; y = -2; z = -2 Г) x = -2; y = -2; z = 2 6. Систему $\begin{cases} -x + 2y = 4 \\ 3x + 4y = -2 \end{cases}$ решают по правилу Крамера. Установите соответствие между названием величины и их значениями.

3) x 1) Δx $2) \Delta y$

A) 20 Б) -10 B) -2 Γ) 1

- 7. Дан определитель третьего порядка $\begin{bmatrix} 1 & -2 & 3 \\ -4 & 5 & 0 \\ 2 & 1 & -1 \end{bmatrix}$. Результат определителя на число 3 равен ...
- - 9. Даны матрицы $A = \begin{pmatrix} 2 & 4 & 1 \\ 1 & 7 & 3 \\ -1 & 3 & 2 \end{pmatrix}; \quad B = \begin{pmatrix} -1 & 0 & 3 \\ 1 & 2 & -2 \\ 3 & 1 & 5 \end{pmatrix}$. Найти произведение матриц AB

Ответ:

Вариант 2

- 1. Даны матрицы $A = \begin{pmatrix} 3 & -1 \\ 0 & -2 \end{pmatrix}$ и $B = \begin{pmatrix} 0 & 1 \\ -4 & 3 \end{pmatrix}$. Тогда матрица $A \cdot B$ равна ...
- A) $\begin{pmatrix} 4 & 0 \\ 8 & -6 \end{pmatrix}$ B) $\begin{pmatrix} 0 & -1 \\ 0 & -6 \end{pmatrix}$ B) $\begin{pmatrix} -1 & -15 \\ -2 & -6 \end{pmatrix}$ Γ) $\begin{pmatrix} 0 & 3 \\ 8 & -7 \end{pmatrix}$
 - 2. Определитель
 2
 0
 3

 1
 0
 1
 2

 2
 равен ...
- A) 1
 - 3. Даны матрицы $A = \begin{pmatrix} -1 & 1 \\ 0 & -2 \end{pmatrix}$ и $B = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$, тогда $3 \cdot A B = \dots$
- A) $\begin{pmatrix} -4 & 1 \\ 1 & -7 \end{pmatrix}$ B) $\begin{pmatrix} -2 & 5 \\ -1 & -5 \end{pmatrix}$ B) $\begin{pmatrix} -4 & 1 \\ -1 & -7 \end{pmatrix}$ Γ) $\begin{pmatrix} -2 & 1 \\ 1 & -5 \end{pmatrix}$
 - 4. Если определитель второго порядка $\begin{bmatrix} x & 6 \\ -2 & -4 \end{bmatrix} = 36$, то x = ...

Ответ: ____

5. Система линейных уравнений $\begin{cases} x-z=0 \\ x+z=4 \end{cases}$ имеет решение ...

A)
$$x = 2$$
; $y = -2$; $z = 2$

B)
$$x = 2$$
; $y = 2$; $z = 2$

Б)
$$x = 2$$
; $y = -2$; $z = -2$

$$\Gamma$$
) x = -2; y = -2; z = 2

- 6. Систему $\begin{cases} 2x y = 5 \\ -3x + y = -7 \end{cases}$ решают по правилу Крамера. Установите соответствие между названием величины и их значениями.
- 1) Δx

 $2) \Delta y$

3) x

4) y

- A) -2
- Б) 1
- B) 2
- Γ) -1
- Д) 0
- 7. Дан определитель третьего порядка $\begin{vmatrix} 3 & -9 & 4 \\ 1 & 3 & 6 \\ -2 & 3 & 1 \end{vmatrix}$. Результат умножения определителя на число $\frac{1}{3}$ равен ...
- A) $\begin{vmatrix} 3 & -3 & 4 \\ 1 & 1 & 6 \\ -2 & 1 & 1 \end{vmatrix}$ B) $\begin{vmatrix} 1 & -3 & \frac{4}{3} \\ \frac{1}{3} & 1 & 2 \\ -2 & 1 & 1 \end{vmatrix}$ B) $\begin{vmatrix} 1 & -3 & 4 \\ 1 & 1 & 2 \\ -2 & 1 & 1 \end{vmatrix}$ Γ) $\begin{vmatrix} 3 & -3 & 4 \\ \frac{1}{3} & 1 & 2 \\ -2 & 1 & 1 \end{vmatrix}$
- 8. Алгебраическое дополнение элемента a_{12} (из задания 7) определителя равно ... Ответ: _____
- 9. Даны матрицы $A = \begin{pmatrix} 0 & 4 & 1 \\ -1 & 5 & 3 \\ -2 & 3 & 2 \end{pmatrix}; \quad B = \begin{pmatrix} 4 & 2 & -3 \\ 1 & 0 & 2 \\ 3 & 4 & 5 \end{pmatrix}$. Найти произведение матриц AB

OTRETLI

Ответы.									1
	1	2	3	4	5	6	7	8	9
1 вариант	A	В	A	7	A	1А2Б3В	Б	1	$ \begin{pmatrix} 5 & 9 & 3 \\ 15 & 17 & 4 \\ 10 & 8 & 1 \end{pmatrix} $
2 вариант	A	A	A	-6	A	1А2Б3В4Г	Б	-13	$ \begin{pmatrix} 7 & 4 & 13 \\ 10 & 10 & 28 \\ 1 & 4 & 22 \end{pmatrix} $

Задания для оценки освоения

Раздела 2 Комплексные числа

Обучающийся должен

знать:

- основы теории комплексных чисел;

уметь:

- пользоваться понятиями теории комплексных чисел.

Типовые вопросы для устного опроса

- 1. Как вычисляют степени мнимой единицы?
- 2. Вычислите i³⁵; i⁴²;i¹⁴⁴.
- 3. Какое число называется комплексным?
- 4. Какие комплексные числа называются равными?
- 5. Какие комплексные числа называются сопряженными?
- 6. Как геометрически изображаются комплексные числа?
- 7. Что называется модулем комплексного числа?
- 8. Что называется аргументом комплексного числа
- 9. Как решить квадратное уравнение, если дискриминант его отрицателен?
- 10. Как записывается комплексное число в показательной форме?
- 11. Как записывается комплексное число в тригонометрической форме?

Типовой тест Раздела 2

Условия выполнения задания

- тест выполняется в аудитории во время практических занятий;
- для выполнения теста необходимо следующее оборудование: бланки ответов, ручки, карточки с тестами (для выполнения электронного варианта теста: компьютерный класс, тестировщик).

Инструкция: на выполнение теста отводится 20 минут, внимательно прочитайте вопрос, выберите один вариант ответа, ответы занесите в бланк ответов

Вариант 1

- 1. Сумма комплексных чисел $z_1 = -2 + 5i$ и $z_2 = 3 7i$ равна ... A) 1 2i B) 1 + 2i Γ) -1 + 2i
 - 2. Тригонометрическая форма комплексного числа z = 2 + 2i имеет вид ...
- A) $2\sqrt{2} \cdot \left(\cos\frac{\pi}{4} i \cdot \sin\frac{\pi}{4}\right)$ B) $2\sqrt{2} \cdot \left(\cos\frac{\pi}{4} + i \cdot \sin\frac{\pi}{4}\right)$ B) $2\sqrt{2} \cdot \left(\sin\frac{\pi}{4} + i \cdot \cos\frac{\pi}{4}\right)$ F) $2\sqrt{2} \cdot \left(\cos\frac{\pi}{4} + i \cdot \sin\frac{\pi}{4}\right)$
- 3. Корни квадратного уравнения $x^2 + 4 = 0$ равны ... A) $x_1 = 2i, x_2 = -2i$ B) $x_1 = 4i, x_2 = -4i$
- E) x = 2i F) $x_1 = 16i x_2 = -16i$
 - 4. Дано комплексное число $z=3\cdot\left(\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\right)$. Тогда значение z^4 равно ...
- A) $81 \cdot \left(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5}\right)$ B) $81 \cdot \left(\cos\frac{\pi^4}{5} + i\sin\frac{\pi^4}{5}\right)$ E) $3 \cdot \left(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5}\right)$ Γ) $81 \cdot \left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)$
 - 5. Даны четыре комплексных числа:
- 1) -2 + 4i 2) 2 + 4i 3) -2 4i 4) 2 4i

Установите соответствие между комплексными числами и сопряженными им.

- - 6. Модуль комплексного числа z = -7i равен ... Ответ:

Вариант 2

- 1. Сумма комплексных чисел $z_1 = 3 2i$ и $z_2 = -8 4i$ равна ...
- A) -5 6i B) -5 + 6i B) -5 2i Γ) 5 + 6i
 - 2. Тригонометрическая форма комплексного числа z=2+2i имеет вид ...
- A) $2\sqrt{2} \cdot \left(\cos\frac{\pi}{4} + i \cdot \sin\frac{\pi}{4}\right)$ B) $2\sqrt{2} \cdot \left(\cos\frac{\pi}{4} i \cdot \sin\frac{\pi}{4}\right)$ B) $2\sqrt{2} \cdot \left(\sin\frac{\pi}{4} + i \cdot \cos\frac{\pi}{4}\right)$ F) $2\sqrt{2} \cdot \left(\cos\frac{\pi}{4} + i \cdot \sin\frac{\pi}{4}\right)$
 - 3. Корни квадратного уравнения $x^2 + 13x + 48 = 0$ равны ...
- A) $x_1 = \frac{-13 i \cdot \sqrt{23}}{2}$, $x_2 = \frac{-13 + i \cdot \sqrt{23}}{2}$ B) $x_1 = \frac{-13 i \cdot 23}{2}$, $x_2 = \frac{-13 + i \cdot 23}{2}$

Б)
$$x_1 = \frac{-13 - i \cdot \sqrt{23}}{2}, x_2 = \frac{13 + i \cdot \sqrt{23}}{2}$$

$$\Gamma$$
) $x_1 = \frac{-23 - i \cdot \sqrt{13}}{2}$, $x_2 = \frac{-23 + i \cdot \sqrt{13}}{2}$

4. Дано комплексное число $z=3\cdot\left(\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\right)$. Тогда значение z^4 равно ...

A)
$$81 \cdot \left(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5}\right)$$

B)
$$81 \cdot \left(\cos\frac{\pi^4}{5} + i\sin\frac{\pi^4}{5}\right)$$

Б)
$$3 \cdot \left(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5}\right)$$

$$\Gamma) 81 \cdot \left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)$$

5. Даны четыре комплексных числа:

1)
$$3 + 5i$$

$$2) 3 - 5i$$

$$3) - 3 + 5i$$

$$4) -3 - 5i$$

Установите соответствие между комплексными числами и сопряженными им.

A)
$$3 - 5i$$

Б)
$$3 + 5i$$

Б)
$$3 + 5i$$
 В) $-3 - 5i$ Г) $-3 + 5i$

$$\Gamma$$
) $-3 + 5i$

Д)
$$\frac{1}{3+5i}$$

6. Модуль комплексного числа z = -9i равен ...

Ответы:

	1	2	3	4	5	6
1 вариант	A	В	A	A	1А2Б3В4Г	7
2 вариант	A	A	A	A	1А2Б3В4Г	9

Задания для оценки освоения

Раздела 3 Геометрия

Обучающийся должен

знать:

- основы математического анализа, линейной алгебры и аналитической геометрии;

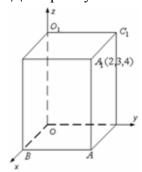
уметь:

 решать задачи, используя уравнения прямых и кривых второго порядка на плоскости.

Типовые вопросы для устного опроса

- 1. Что называется вектором?
- 2. Что называется длиной вектора?
- 3. Какие векторы называются равными?
- 4. Какие векторы называются коллинеарными?
- 5. Как найти координаты вектора, заданного двумя точками?
- 6. Как найти длину вектора, заданного двумя точками?
- 7. Как вычисляется длина вектора, заданного своими координатами?
- 8. Как выполняются сложение и вычитание векторов, заданных своими координатами?
- 9. Как умножить вектор, заданный своими координатами, на число?
- 10. Каким свойством обладают координаты коллинеарных векторов?
- 11. Даны векторы $\overrightarrow{m} = (-1;3)$, $\overrightarrow{n} = (5;-2)$, p = (3;9), $\overrightarrow{q} = (10;-4)$, $\overrightarrow{r} = (7;1)$. Какие из них коллинеарны?
 - 12. Как вычисляется скалярное произведение векторов, заданных своими координатами?
 - 13. Какими свойствами обладает скалярное произведение векторов?
 - 14. Чему равно скалярное произведение двух чисел перпендикулярных векторов?
 - 15. Чему равно скалярное произведение двух чисел коллинеарных векторов?
 - 16. Что называет уравнением линии?
 - 17. Сформулируйте условие параллельности прямых.
 - 18. Сформулируйте условие перпендикулярных прямых.
 - 19. Как найти угол между прямыми?
 - 20. Запишите каноническое уравнение эллипса.
 - 21. Уравнение окружности со смещенным центром.
 - 22. Запишите каноническое уравнение гиперболы

Типовой тест Раздела 3


Условия выполнения задания

- тест выполняется в аудитории во время практических занятий;
- для выполнения теста необходимо следующее оборудование: бланки ответов, ручки, карточки с тестами (для выполнения электронного варианта теста: компьютерный класс, тестировщик).

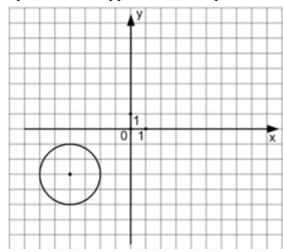
Инструкция: на выполнение теста отводится 30 минут, внимательно прочитайте вопрос, выберите один вариант ответа, ответы занесите в бланк ответов

Вариант 1

1. Дан прямоугольный параллелепипед.

Одна из его вершин совпадает с началом координат. Ребра, исходящие из этой вершины, лежат на осях координат. Вершина \mathring{A}_1 имеет координаты (2; 3; 4). Установите соответствие между вершинами данного параллелепипеда и их координатами.

4) C_1


- 1) A 2) B
- 2) B 3) B_1
- A) (2; 3; 0) B) (0; 3; 0) Γ) (0; 3; 4) Π) (2; 0; 4)
 - 2. Пусть векторы заданы своими координатами: $\bar{a}=\{2; -3; 1\}$ и $\bar{b}=\{3; 0; 2\}$. В этом случае их скалярное произведение $\bar{a}\cdot\bar{b}$ равно ... Ответ:
 - 3. Даны векторы $\bar{a}=\{3;\ 1;-2\}$ и $\bar{b}=\{-4;5;2\}$. Тогда сумма координат вектора $2\bar{a}+\bar{b}$ равна ... Ответ:
 - 4. Для точек A(1; 4) и B(-1; 3) общее уравнение прямой является ...
- A) x 2y + 7 = 0

B) x - y + 3 = 0

Б) x + 2y + 3 = 0

 Γ) 2x - y + 7 = 0

- 5. В координатной плоскости XOY линия задана уравнением $\frac{x^2}{3^2} + \frac{y^2}{4^2} = 1$. Тогда эта линия проходит через точки ...
- A) $(\sqrt{3}; 2)$
- Б) (3; 4)
- B) (0; -4)
- Γ) (3; 0)
- 6. Уравнением окружности, изображенной на чертеже,

является ...

A)
$$(x-4)^2 + (y-3)^2 = 4$$

B)
$$(x + 3)^2 - (y - 2)^2 = 16$$

Б)
$$(x + 4)^2 + (y + 3)^2 = 4$$

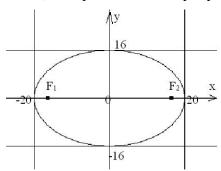
$$\Gamma) (x+3)^2 + (y-2)^2 = 4$$

7. Составить уравнение прямой с угловым коэффициентом k = 3 и проходящей через точку А(-4;7):

A)
$$v=3x+5$$

$$\Gamma$$
) y=3x-19

8. Дана прямая 3x + 5y - 7 = 0. Среди указанных прямых выбрать параллельную ей:


A)
$$3x - 8y - 7 = 0$$

$$\mathbf{b}) - 2x + 5y - 7 = 0$$

B)
$$6x + 10y + 1 = 0$$

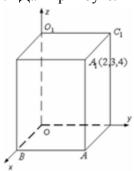
$$\Gamma) - 5x + 3y + 2 = 0$$

9. Составить уравнение эллипса, изображённого на рисунке:

A)
$$\frac{x^2}{20} + \frac{y^2}{16} = 1$$

A)
$$\frac{x^2}{20} + \frac{y^2}{16} = 1$$
 B) $\frac{x^2}{400} + \frac{y^2}{256} = 1$

B3)
$$\frac{x^2}{256} + \frac{y^2}{400} = 1$$
 Γ) $\frac{x^2}{400} - \frac{y^2}{16} = 1$


$$\Gamma) \frac{x^2}{400} - \frac{y^2}{16} =$$

10. Эксцентриситетом эллипса $\frac{x^2}{100} + \frac{y^2}{64} = 1$ будет ...

Ответ: ____

Вариант 2

1. Дан прямоугольный параллелепипед.

Одна из его вершин совпадает с началом координат. Ребра, исходящие из этой вершины, лежат на осях координат. Вершина \vec{A}_1 имеет координаты (2; 3; 4). Установите соответствие между вершинами данного параллелепипеда и их координатами.

1) A

2) B

3) O_1

4) C_1

A) (2; 3; 0)

Б) (2; 0; 0)

B) (0; 0; 4) Γ) (0; 3; 4) Π) (2; 0; 4)

2. Пусть векторы заданы своими координатами: $\bar{a} = \{2; -3; 1\}$ и $\bar{b} = \{3; 0; 2\}$. В этом случае их скалярное произведение $\bar{a}\cdot\bar{b}$ равно ...

Ответ:

3. Даны векторы $\bar{a}=\{3;\ 1;-2\}$ и $\bar{b}=\{-4;5;2\}$. Тогда сумма координат вектора $2\bar{a}+\bar{b}$ равна ...

Ответ: ___

4. Для точек A(1; 4) и B(-1; 3) общее уравнение прямой является ...

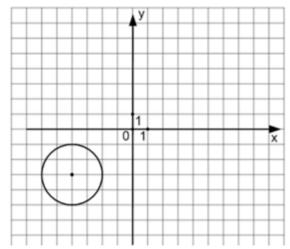
A)
$$x - 2y + 7 = 0$$

B)
$$x - y + 3 = 0$$

Б)
$$x + 2y + 3 = 0$$

$$\Gamma$$
) $2x - y + 7 = 0$

5. В координатной плоскости XOY линия задана уравнением $y^2 = 2x + 1$. Тогда эта линия проходит через точки ...


A) (4; -3)

Б) (12; 5)

B) (2; 5)

 Γ) (-1; 1)

6. Уравнением окружности, изображенной на чертеже,

является ...

A)
$$(x + 4)^2 + (y + 3)^2 = 4$$

B)
$$(x + 3)^2 - (y - 2)^2 = 16$$

$$\mathbf{E}(x-4)^2 + (y-3)^2 = 4$$

$$\Gamma) (x+3)^2 + (y-2)^2 = 4$$

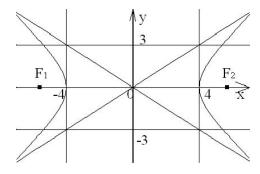
7. Уравнение прямой, проходящей через две данные точки А (1; - 6) и В (- 4; 5), имеет

A)
$$-5(x-1) + 11(y+6) = 0$$
 B) $\frac{x-1}{-5} = \frac{y+6}{11}$

$$5) \quad \frac{x-1}{-5} = \frac{y+6}{11}$$

B)
$$\frac{x+1}{-3} = \frac{y-6}{-1}$$

B)
$$\frac{x+1}{-3} = \frac{y-6}{-1}$$
 Γ) $\frac{x-1}{5} = \frac{y+6}{-11}$


8. Среди предложенных прямых выбрать прямую, перпендикулярную прямой 2х-

A)
$$7x+2y+1=0$$

$$\Gamma$$
) 4x-14y+3=0

B)
$$2x-7y+12=0$$

9. Асимптоты гиперболы, изображённой на рисунке, задаются уравнениями:

A)
$$y = \frac{3}{4}x$$
 и $y = \frac{4}{3}x$

A)
$$y = \frac{3}{4}x$$
 и $y = \frac{4}{3}x$ Б) $y = -\frac{3}{4}x$ и $y = -\frac{4}{3}x$

$$\Gamma$$
) $y = \frac{3}{4}x$ и $y = -\frac{3}{4}x$

10. Дана гипербола $\frac{x^2}{144} - \frac{y^2}{256} = 1$. Найдите фокусное расстояние гиперболы ...

Ответ:

Ответы:

	1	2	3	4	5	6	7	8	9	10
1 вариант	1А2Б3Д4Г	8	7	A	ВΓ	Б	В	В	Б	1,28
_										или
										$\sqrt{41}$
										5
2 вариант	1А2Б3В4Г	8	7	Α	ΑБ	A	В	A	A	40

Задания для оценки освоения

Раздела 4 Математический анализ

Обучающийся должен

знать:

- основы математического анализа, линейной алгебры и аналитической геометрии;
- основы дифференциального и интегрального исчисления;

уметь:

- применять методы дифференциального и интегрального исчисления;
- решать дифференциальные уравнения.

Типовые вопросы для устного опроса

- 1. Перечислите свойства пределов.
- 2. Дайте определение непрерывной функции в точке.
- 3. Основные теоремы о непрерывных функциях
- 4. Классификация точек разрыва
- 5. Объясните основной метод раскрытия неопределенности $\frac{\infty}{\infty}$ на примере вычисления

предела.

- 6. Правило раскрытия неопределенности 0/0
- 7. Замечательные пределы
- 8. Как найти мгновенную скорость прямолинейного неравномерного движения?
- 9. Как вычислить угловой коэффициент касательной к кривой в данной точке?
- 10. Выпишите в таблицу основные правила и формулы дифференцирования функций.
- 11. Правило вычисления производной сложной функции.
- 12. Каков геометрический смысл производной?
- 13. В чем заключается механический смысл производной?
- 14. Каковы знаки производной функции в интервалах ее возрастания и убывания?
- 15. Как определяются геометрически и по знаку второй производной выпуклость и вогнутость кривой?
 - 16. Сформулируйте правило нахождения точки перегиба.
 - 17. Как называются все элементы равенства $\int f(x)dx = F(x) + C$?
 - 18. Что означает постояннаяС в определении неопределенного интеграла?
 - 19. Напишите основные формулы интегрирования?
 - 20. Как доказать справедливость каждой формулы интегрирования?

21. Какие из следующих равенств записаны верно, а какие нет: а) $\int x^3 dx = 3x^2 + C$; б) $\frac{dx}{x} = \ln x + C$; в) $\int (1+x)dx = x + \frac{x^2}{2} + C$?

- 22. Скорость прямолинейно движущейся точки меняется по закону $\upsilon = 3t^2 + 1$. Найдите закон движения.
 - 23. Что такое определенный интеграл?
 - 24. Сформулируйте основные свойства определенного интеграла.
 - 25. В чем заключается геометрический смысл определенного интеграла?
- 26. Может ли площадь криволинейной трапеции быть равна отрицательной величине, нулю и почему?
 - 27. Определение частных производных второго порядка
 - 28. Определение экстремума функции двух переменных в точке
 - 29. В чем заключается необходимое условие экстремума?
 - 30. В чем заключается достаточное условие экстремума?
 - 31. Понятие двойного интеграла
- 32. Какие из следующих уравнений являются дифференциальными: a) yy'+2=0; б) $2y^2+3y=0$; в) $3^y+y=3$; г) $y^2+y''=y$; д) $\frac{dv}{dt}=3y$; e) $y^3=2y+y^2$.
 - 33. Чем отличается дифференциальное уравнение от алгебраического уравнения?
 - 34. Назовите известные вам типы дифференциальных уравнений.
- 35. Каков общий вид дифференциальных уравнений первого порядка с разделенными и разделяющимися переменными?

Типовой тест Раздела 4

Условия выполнения задания

- тест выполняется в аудитории во время практических занятий;
- для выполнения теста необходимо следующее оборудование: бланки ответов, ручки, карточки с тестами (для выполнения электронного варианта теста: компьютерный класс, тестировщик).

Инструкция: на выполнение теста отводится 45 минут, внимательно прочитайте вопрос, выберите один вариант ответа, ответы занесите в бланк ответов

Вариант 1

1.	Предел функции в точке $\lim_{x\to -3} (2x^2 - 4x - 10) = \dots$
	Ответ:

2.
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{-7x} = \dots$$

A) e^{-7} B) e^{7}

A)
$$e^{-7}$$

B)
$$\infty$$

3.
$$\lim_{x\to\infty} \frac{x^4-5x^3+x+8}{3x^3+4x^2-7x+6}$$
 pases ...

A)
$$\frac{4}{3}$$

B)
$$\frac{1}{3}$$

4.
$$\lim_{x\to 5} \frac{x-5}{x^2-25}$$
 pases ...

A)
$$\frac{1}{10}$$

5.
$$\lim_{x\to 0} \frac{\sin 8x}{x}$$
 pases ...

Ответ: _____

6. Производная функции $y = x^3 \cdot e^x + 5x$ равна ...

A)
$$x^2 \cdot e^x(3+x) + 5$$

B)
$$3x^2 \cdot e^x + 5$$

$$\mathbf{E}(\mathbf{x}) \mathbf{x}^2 \cdot e^{\mathbf{x}} (3 + \mathbf{x})$$

$$\Gamma) x^4 \cdot e^{x-1} + 5$$

7. Производная функции y = cos(2x - 3) равна ...

A)
$$\cdot sin(2x - 3)$$

B)
$$-2\sin(2x - 3)$$

$$\mathbf{E})\ 2 \cdot \sin(2x-3)$$

$$\Gamma$$
) $-sin(2x-3)$

8. Если
$$f(x) = cos x + 4x$$
, то $f'\left(\frac{3\pi}{2}\right)$ принимает значение, равное ... Ответ:

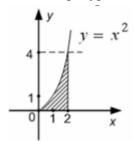
9. Точка минимума функции
$$y = x^3 - 12x^2 + 45x - 5$$
 имеет значение x_0 , равное ... Ответ: _____

10. Наименьшее значение функции
$$f(x) = -2x^3 - 3x^2 + 12x + 4$$
 на отрезке [0; 2] равно ... Ответ:

11. Неопределенный интеграл $\int 7\cos x dx$ равен ...

A)
$$-7 \cdot sinx + C$$

B)
$$-7 \cdot cosx + C$$


$$\mathbf{E}$$
) $7 \cdot sinx + C$

$$\Gamma$$
) $sinx + C$

12. Определенный интеграл $\int_{\frac{1}{2}}^{1} \frac{2dx}{x^3}$ равен ...

Ответ: _____

A)
$$\frac{8}{3}$$

Б) $\frac{64}{3}$

B) 4

- Γ) 16
- 14. Скорость движения тела задана уравнением $v(t) = \frac{5}{\sqrt{t}}$. Тогда путь, пройденный телом за 9 секунды от начала движения, равен ...

Ответ: _____

15. Неопределенный интеграл $\int (12x-7)^7 dx$ равен ...

A)
$$\frac{(12x-7)^8}{96} + C$$

B)
$$\frac{8(12x-7)^8}{12} + C$$

Б)
$$\frac{(12x-7)^8}{8} + C$$

$$\Gamma = \frac{(12x-7)^8}{7} + C$$

16. Определенный интеграл $\int_{-3}^{2} (2x-3) dx$ равен ...

Ответ: _____

17. Функция $f(x) = x^3 - x^2 - x + 4$ задана на отрезке [0; 2]. $\int_0^2 f(x) dx = \cdots$

A)
$$8\frac{1}{3}$$

Б)
$$7\frac{1}{3}$$

B)
$$7\frac{2}{3}$$

$$\Gamma$$
) $8\frac{2}{3}$

18. Функция $f(x) = x^3 - x^2 - x + 4$ задана на отрезке [0; 2]. Наибольшее значение данной функции равно ...

Ответ: _____

19. Решением дифференциального уравнения с разделяющими переменными $4x^3dx + 3y^2dy = 0$ является ...

$$A) x^4 + y^3 = C$$

B)
$$4x^4 + 3y^3 = C$$

$$\mathbf{E}(\mathbf{x}) \mathbf{A} \mathbf{x}^3 + \mathbf{3} \mathbf{y}^2 = \mathbf{C}(\mathbf{x}) \mathbf{A} \mathbf{x}^3 + \mathbf{A} \mathbf{y}^2 \mathbf{A} \mathbf{x}^2 \mathbf{A} \mathbf{x}^2$$

$$\Gamma)\,x^4=y^3$$

20. Для однородного уравнения $y' = \frac{4x+y}{x}$ соответствующее уравнение с разделяющими переменными будет иметь вид ...

A)
$$du - \frac{4dx}{x} = 0$$

$$B) x \cdot du - 4dx = 0$$

$$\mathbf{E})\frac{du}{u+4} - \frac{dx}{x} = 0$$

$$\Gamma) dy - \frac{4dx}{x} = 0$$

21. Для линейного дифференциального уравнения $y' - y \cdot cosx = sinx$ функцию v находят из уравнения ...

A)
$$v' - cosx \cdot v = 0$$

B)
$$v' + sinx \cdot v = 0$$

$$\mathbf{b}) v' + \cos x \cdot v = 0$$

$$\Gamma) v' - sinx \cdot v = 0$$

22. Общим решением дифференциального уравнения y'' + 3y' - 4 = 0 является ...

A)
$$y = C_1 e^x + C_2 e^{-4x}$$

B)
$$y = e^x - 4e^{-4x}$$

Б)
$$y = C_1 e^{-x} + C_2 e^{4x}$$

$$\Gamma) y = e^{-x} - 4e^{4x}$$

23. Общим решением дифференциального уравнения y'' = sinx является ...

$$A) y = -\sin x + C_1 x + C_2$$

B)
$$y = -\sin x + C_1$$

$$\mathbf{E}(\mathbf{y}) = \sin x + C_1 x + C_2$$

$$\Gamma) y = e^x + C_1 x^2 + C_2$$

24. Частными решением дифференциального уравнения y'' + y = 0 являются ...

A)
$$y = cosx$$

B)
$$y = e^{-x}$$

$$\mathbf{E}(\mathbf{y}) = \mathbf{y} = \mathbf{y}$$

$$\Gamma$$
) $\nu = x^2$

Вариант 2

1. Предел функции в точке $\lim_{x\to -1} (4x^2 - 3x - 6) = \dots$ Ответ:

$$2. \quad \lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n = \dots$$

A)
$$e^{-1}$$

3.
$$\lim_{x\to\infty} \frac{x^4-5x^3+x+8}{3x^3+4x^2-7x+6}$$
 pases ...

B)
$$\frac{1}{a}$$

$$\Gamma$$
) $\frac{4}{3}$

4.
$$\lim_{x\to 9} \frac{x^2-81}{x-9}$$
 pases ...

A) 18

$$\Gamma$$
) ∞

5.
$$\lim_{x\to 0} \frac{8x}{\sin 4x}$$
 pases ...

Ответ: _____ 6. Производная функции $y = x^3 \cdot sinx - 4 \cdot x$ равна ...

A)
$$3 \cdot x^2 \cdot sinx + x^3 \cdot cosx - 4$$

B)
$$3 \cdot x^2 \cdot cos x - 4$$

$$\mathbf{b})\ 3 \cdot x^2 \cdot sinx + x^3 \cdot cosx$$

$$\Gamma$$
) $3 \cdot x^2 + cos x - 4$

7. Производная функции y = cos(2x - 3) равна ...

A)
$$-2 \cdot sin(2x - 3)$$

B)
$$sin(2x-3)$$

$$(5) \cdot 2 \cdot \sin(2x - 3)$$

$$\Gamma$$
) $-\sin(2x-3)$

8. Если f(x) = coxx + 4x, то $f'\left(\frac{3\pi}{2}\right)$ принимает значение, равное ...

Ответ:				
_	 инимума функции <i>у</i> =	$2x^3 - 21x^2 + 60x + 2$ им	иеет значение x_0 , равное	
10. Наимен	ьшее значение функци	$f(x) = -x^3 + 10x^2 - 1$	7x + 10 на отрезке [0; 3]	равно
 Ответ: _				
11. Неопред	целенный интеграл ∫ 7	cosxdx равен		
A) $7 \cdot sinx + C$		B) $-7 \cdot cosx + C$		
$\mathbf{E}) - 7 \cdot \sin x + 6$,	Γ) $sinx + C$		
12. Определ	пенный интеграл $\int_3^6 \frac{dx}{\sqrt{x}}$: равен		
13. Площад	ь фигуры, изображенн	ой на заданном рисунке, р	авна	
8	$y = x^3$			
0 1 2	x F) 1024	D\ 12	II) 2	
A) 4	Б) 1024	B) 12	Γ) 2	
телом за	гь движения тела зада а 4 секунды от начала д	на уравнением $v(t) = 3t^2$ цвижения, равен	— 2t. Тогда путь, пройд	ценный
15. Неопред	целенный интеграл ∫ <i>s</i> а	in4xdx равен		
A) $-\frac{1}{4}\cos 4x +$	•	B) $-4\cos 4x + C$		
$\mathrm{E})^{\frac{1}{4}}\cos 4x + C$		Γ) $4 \cdot cos4x + C$		
	пенный интеграл $\int_{1}^{2} (5 - \frac{1}{2})^{2}$	– 4 <i>x</i>) <i>dx</i> равен		
17. Функци	$f(x) = x^3 - x^2 - x + x^3 - x$	4 задана на отрезке [0; 2]	$\int_0^2 f(x)dx = \cdots$	
A) $7\frac{1}{3}$	Б) $8\frac{1}{3}$	B) $7\frac{2}{3}$	Γ) $8\frac{2}{3}$	
функци	я $f(x) = x^3 - x^2 - x + x^3$ и равно	4 задана на отрезке [0; 2]]. Наибольшее значение ;	данной
	ем дифференциальног = 0 является	го уравнения с разделяю	ощими переменными За	x^2dx –

$$A) x^3 - y^5 = C$$

$$E(3) x^2 - 5y^4 = C$$

B)
$$3x^3 - 5y^5 = C$$

$$\Gamma) x^3 = -y^5$$

20. Для однородного уравнения $y' = \frac{5x+y}{x}$ соответствующее уравнение с разделяющими переменными будет иметь вид ...

A)
$$du - \frac{5dx}{x} = 0$$

$$B) x \cdot du - 5dx = 0$$

$$\mathbf{E})\frac{du}{u+5} - \frac{dx}{x} = 0$$

$$\Gamma) dy - \frac{5dx}{x} = 0$$

21. Для линейного дифференциального уравнения $y' + y \cdot x^3 = 5x^2$ функцию v находят из уравнения ...

$$A) v' + x^3 \cdot v = 0$$

$$B) v' + 5x^2 \cdot v = 0$$

$$\mathbf{E}) v' - x^3 \cdot v = 0$$

$$\Gamma) v' - 5x^2 \cdot v = 0$$

22. Общим решением дифференциального уравнения y'' - 4y' - 12 = 0 является ...

A)
$$y = C_1 e^{-2x} + C_2 e^{6x}$$

B)
$$y = 2e^{2x} - 3e^{-6x}$$

Б)
$$y = C_1 e^{2x} + C_2 e^{-6x}$$

$$\Gamma$$
) $y = 2e^{-2x} + 4e^{6x}$

23. Общим решением дифференциального уравнения $y'' = e^x$ является ...

A)
$$y = e^x + C_1 x + C_2$$

B)
$$y = e^x + C_1$$

Б)
$$y = -e^x + C_1 x + C_2$$

$$\Gamma) y = e^x + C_1 x^2 + C_2$$

24. Частными решением дифференциального уравнения y'' - 3y' - 4y = 0 является ...

$$A) y = 2e^{-x}$$

B)
$$y = \sin x$$

Б)
$$y = e^{4x}$$

$$\Gamma) y = x^2 - 3x - 4$$

Ответы:

	1	вариант		2 вариант				
1	20	13	A	1	1	13	4	
2	A	14	30	2	A	14	48	
3	Γ	15	A	3	A	15	A	
4	A	16	-20	4	A	16	-1	
5	8	17	Б	5	2	17	A	
6	A	18	6	6	A	18	6	
7	В	19	A	7	A	19	A	
8	5	20	A	8	5	20	A	
9	3	21	A	9	5	21	A	
10	11	22	A	10	2	22	A	
11	A	23	A	11	A	23	A	
12	3	24	АБ	12	2	24	АБ	

Задания для оценки освоения

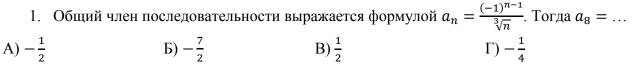
Раздела 5 Ряды

Обучающийся должен

знать:

- основы математического анализа, линейной алгебры и аналитической геометрии.

Типовые вопросы для устного опроса


- 1. Что называется числовым рядом?
- 2. Какой ряд называется расходящимся?
- 3. Необходимый признак сходимости
- 4. Необходимые признаки сходимости рядов с положительными членами
- 5. Какой ряд называется знакочередующимся?
- 6. Признак Лейбница для знакочередующегося ряда.
- 7. Какие ряды называются степенными?

Типовой тест Раздела 5

Условия выполнения задания

- тест выполняется в аудитории во время практических занятий;
- для выполнения теста необходимо следующее оборудование: бланки ответов, ручки, карточки с тестами (для выполнения электронного варианта теста: компьютерный класс, тестировщик).

Инструкция: на выполнение теста отводится 20 минут, внимательно прочитайте вопрос, выберите один вариант ответа, ответы занесите в бланк ответов

2. Общий член последовательности выражается формулой $a_n = \frac{n!}{n^2}$. Тогда $a_3 = \dots$

A)
$$\frac{2}{3}$$
 B) $\frac{1}{2}$ Γ) 1

- 3. Ряд $\cos x + \frac{\cos^2 x}{2} + \frac{\cos^3 x}{6} + \frac{\cos^4 x}{24} + \dots$ является...
 - А. Степенным
 - Б. Функциональным

- В. Знакочередующимся
- Г. Знакоположительным
- 4. Дан ряд $\sum_{n=1}^{\infty} \frac{n}{10n+1}$. Используя необходимое условие сходимости ряда, сделайте вывод
 - А. ряд расходится
 - Б. ряд сходится
 - В. нельзя определить сходится или расходится ряд
 - Г. другой ответ
- 5. Установите соответствие между рядом и его названием.

Название	Ряд
 Рад с положительными членами Знакочередующийся ряд Степенной ряд Функциональный ряд 	A. $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots$ B. $x + x^2 + x^3 + x^4 + x^5 + \dots$ B. $1 + 2 + 3 + 4 + 5 + 6 + \dots$ Γ . $\cos x + \cos^2 x + \cos^3 x + \cos^4 x + \dots$

6. Установите соответствие между числовым рядом и его общим членом a_n

Ряд	Общий член ряда a_n
$1. \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \dots$	A. $a_n = \frac{1}{n+2}$
2. $1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+$	$\mathbf{F.} a_n = \frac{1}{2n}$
3. $\frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \dots$	B. $a_n = \frac{1}{2n+1}$
4. $\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \dots$	Γ . $a_n = \frac{1}{2n-1}$

- 7. Найдите сумму ряда: $\sum_{n=1}^{\infty} \left(\frac{1}{10}\right)^n$
- A) 1

- Б) 0,1
- B) 0,9

$$\Gamma$$
) $\frac{1}{9}$

Ответы:

1	2	3	4	5	6	7
A	A	Б	Б	1В2А3Б4Г	1Б2Г3А4В	Б

5 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Промежуточная аттестация проводится в форме экзамена.

Экзамен по учебной дисциплине проводится в тестовой форме.

Типовые вопросы для подготовки к экзамену

- 1 Матрицы. Виды матриц
- 2 Свойства матриц
- 3 Линейные операции над матрицами
- 4 Определители. Вычисление определителей 2-го и 3-го порядков
- 5 Свойства определителей
- 6 Системы линейных уравнений: общие понятия
- 7 Решение систем с помощью формул Крамера
- 8 Решение систем методом Гаусса
- 9 Понятие вектора. Линейные операции над векторами
- 10 Операции над векторами, заданными в координатной форме
- 11 Скалярное произведение векторов
- 12 Длина вектора. Угол между векторами
- 13 Векторное произведение векторов и его геометрический смысл
- 14 Смешанное произведение векторов и его геометрический смысл
- 15 Прямая на плоскости. Различные виды уравнений прямой
- 16 Угол между прямой, условия параллельности и перпендикулярности двух прямых
- 17 Линия второго порядка: эллипс, гипербола, парабола
- 18 Понятие функции, ее область определения. Способы задания функции. Графики функций
 - 19 Предел и непрерывность функции одной переменной
 - 20 Основные теоремы о пределах функции
 - 21 Бесконечно малые и бесконечно большие функции
 - 22 Первый и второй замечательные пределы
 - 23 Основные методы раскрытия неопределенностей при вычислении пределов функции
 - 24 Правило Лопиталя при нахождении пределов функций
 - 25 Точки разрыва функции. Классификация точек разрыва
 - 26 Производная функции. Общее правило нахождения производной функции

- 27 Механический и геометрический смысл производной. Уравнение касательной к кривой в данной точке
 - 28 Таблица производных функций
 - 29 Правила дифференцирования. Производная сложной функции.
 - 30 Дифференциал функции. Применение дифференциала в приближенных вычислениях
 - 31 Возрастание и убывание функции, экстремум функции
 - 32 Выпуклые и вогнутые функции. Точки перегиба. Асимптота графика функции.
 - 33 Общая схема исследования функции и построение ее графика
 - 34 Наибольшее и наименьшее значение функции на отрезке
 - 35 Первообразная. Неопределенный интеграл и его свойства
 - 36 Таблица интегралов
 - 37 Методы интегрирования: замена переменной, интегрирование по точкам
 - 38 Определенный интеграл и его свойства
 - 39 Формула Ньютона Лейбница для вычисления определенных интегралов
- 40 Методы вычисления определенных интегралов: замена переменной, интегрирования по частям
 - 41 Вычисление площади фигуры, ограниченной плоской кривой
 - 42 Длина дуги кривой. Объем тела вращения
- 43 Понятие дифференциального уравнения, его решения, задача Коши. Дифференциальные уравнения первого порядка с разделяющимися переменными
 - 44 Однородные и линейные дифференциальные уравнения первого порядка
 - 45 Дифференциальные уравнения второго порядка, решаемые понижением порядка
- 46 Линейные однородные и неоднородные дифференциальные уравнения 2 го порядка с постоянными коэффициентами
- 47 Числовые ряды. Исследование на сходимость. Сходимость и расходимость числовых рядов.
 - 48 Признак сходимости Даламбера. Знакопеременные ряды
 - 49 Функциональные ряды. Степенные ряды.
 - 50 Разложение элементарных функций в ряд Тейлора и ряд Маклорена
- 51 Комплексные числа: формы записи: алгебраическая, тригонометрическая и показательная; действия с комплексными числами

Типовой итоговый тест

Вариант 1

1. Даны матрицы $A = \begin{pmatrix} -1 & 0 \\ 3 & 4 \end{pmatrix}$ и $B = \begin{pmatrix} -2 & 1 \\ -1 & 0 \end{pmatrix}$. Тогда матрица $A \cdot B$ равна ...

- A) $\begin{pmatrix} 2 & -1 \\ -10 & 3 \end{pmatrix}$ B) $\begin{pmatrix} 2 & 0 \\ -3 & 0 \end{pmatrix}$ B) $\begin{pmatrix} 2 & 1 \\ -2 & -3 \end{pmatrix}$ Γ) $\begin{pmatrix} -1 & 0 \\ -1 & 0 \end{pmatrix}$

A)0

B) 1

 Γ) 3

3. Систему $\begin{cases} -x + 2y = 4 \\ 3x + 4y = -2 \end{cases}$ решают по правилу Крамера. Установите соответствие между названием величины и их значениями.

1) Δx

 $2) \Delta y$

3) x

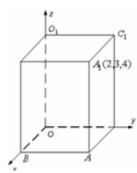
- A) 20
- Б) -10
- B) -2
- Γ) 1

4. Даны матрицы $A = \begin{pmatrix} 2 & 1 \\ -3 & -4 \end{pmatrix}$ и $B = \begin{pmatrix} -1 & 0 \\ 1 & 2 \end{pmatrix}$, тогда $A + 3 \cdot B = \dots$

- A) $\begin{pmatrix} -1 & 1 \\ 0 & 2 \end{pmatrix}$ B) $\begin{pmatrix} 5 & 1 \\ 0 & 2 \end{pmatrix}$ Γ) $\begin{pmatrix} -1 & 1 \\ 0 & -2 \end{pmatrix}$

5. Если определитель второго порядка $\begin{vmatrix} 7 & -3 \\ x & -5 \end{vmatrix} = -14$, то $x = \dots$

Ответ:


6. Система линейных уравнений $\begin{cases} x-z=0\\ x+z=4\\ x+y+z=2 \end{cases}$ имеет решение ...

A) x = 2; y = -2; z = 2

Б) x = 2; y = -2; z = -2

 Γ) x = -2; y = -2; z = 2

7. Дан прямоугольный параллелепипед.

Одна из его вершин совпадает с началом координат. Ребра, исходящие из этой вершины, лежат на осях координат. Вершина \vec{A}_1 имеет координаты (2; 3; 4). Установите соответствие между вершинами данного параллелепипеда и их координатами.

1) A

2) B

3) B_1

4) C_1

A) (2; 3; 0)

Б) (2; 0; 0)

B) (0; 3; 0)

 Γ) (0; 3; 4) Π) (2; 0; 4)

8. Пусть векторы заданы своими координатами: $\bar{a}=\{2;\; -3; 1\}$ и $\bar{b}=\{3; 0; 2\}$. В этом случае их скалярное произведение $\bar{a}\cdot\bar{b}$ равно ...

9. Даны векторы $\bar{a}=\{3;\ 1;-2\}$ и $\bar{b}=\{-4;5;2\}$. Тогда сумма координат вектора $2\bar{a}+\bar{b}$ равна ...

Ответ: _____

10. Для точек A(1; 4) и B(-1; 3) общее уравнение прямой является ...

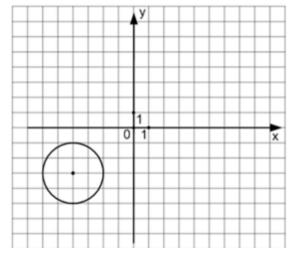
A)
$$x - 2y + 7 = 0$$

B)
$$x - y + 3 = 0$$

$$\mathbf{E}(x) = \mathbf{E}(x) + \mathbf{E}$$

$$\Gamma) 2x - y + 7 = 0$$

11. В координатной плоскости XOY линия задана уравнением $\frac{x^2}{3^2} + \frac{y^2}{4^2} = 1$. Тогда эта линия проходит через точки ...


A) $(\sqrt{3}; 2)$

Б) (3; 4)

B) (0; -4)

 Γ) (3; 0)

12. Уравнением окружности, изображенной на чертеже,

является ...

A)
$$(x-4)^2 + (y-3)^2 = 4$$

B)
$$(x + 3)^2 - (y - 2)^2 = 16$$

Б)
$$(x + 4)^2 + (y + 3)^2 = 4$$

$$\Gamma(x+3)^2 + (y-2)^2 = 4$$

13. Производная функции $y = x^3 \cdot e^x + 5x$ равна ...

A)
$$x^2 \cdot e^x(3+x) + 5$$

B)
$$3x^2 \cdot e^x + 5$$

Б)
$$x^2 \cdot e^x (3 + x)$$

$$\Gamma) x^4 \cdot e^{x-1} + 5$$

14. Производная функции y = cos(2x - 3) равна ...

A)
$$\cdot \sin(2x - 3)$$

B)
$$-2sin(2x - 3)$$

$$\mathbf{E})\ 2 \cdot \sin(2x-3)$$

$$\Gamma$$
) $-\sin(2x-3)$

15. Если
$$f(x) = cosx + 4x$$
, то $f'\left(\frac{3\pi}{2}\right)$ принимает значение, равное ... Ответ: _____

16. Точка минимума функции
$$y = x^3 - 12x^2 + 45x - 5$$
 имеет значение x_0 , равное ... Ответ: _____

17. Наименьшее значение функции
$$f(x) = -2x^3 - 3x^2 + 12x + 4$$
 на отрезке [0; 2] равно ... Ответ: ______

18. Значения x_0 и Δx выбираются так, чтобы можно было вычислить $y(x_0)$ и при этом Δx , взятое по модулю, было бы как можно меньше. Тогда приближенное значение выражения $\sqrt{16,08}$ равно ...

A)
$$4\frac{1}{100}$$

Б)
$$4\frac{1}{1000}$$

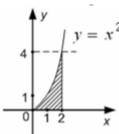
B)
$$4\frac{1}{10}$$

$$\Gamma$$
) $4\frac{1}{5}$

19. Неопределенный интеграл ∫ 7*cosxdx* равен ...

A)
$$-7 \cdot sinx + C$$

B)
$$-7 \cdot cosx + C$$


$$\mathbf{E}$$
) $7 \cdot sinx + C$

$$\Gamma$$
) $sinx + C$

20. Определенный интеграл $\int_{\frac{1}{2}}^{1} \frac{2dx}{x^3}$ равен ...

Ответ:

21. Площадь фигуры, изображенной на заданном рисунке, равна ...

A)
$$\frac{8}{3}$$

Б)
$$\frac{64}{3}$$

22. Скорость движения тела задана уравнением $v(t) = \frac{5}{\sqrt{t}}$. Тогда путь, пройденный телом за 9 секунды от начала движения, равен ...

Ответ: _____

23. Неопределенный интеграл $\int (12x-7)^7 dx$ равен ...

A) $\frac{(12x-7)^8}{96} + C$

B) $\frac{8(12x-7)^8}{12} + C$

Б) $\frac{(12x-7)^8}{8} + C$

 $\Gamma = \frac{(12x-7)^8}{7} + C$

24. Определенный интеграл $\int_{-3}^{2} (2x-3) dx$ равен ...

Ответ:

25. Решением дифференциального уравнения с разделяющими переменными $4x^3dx + 3y^2dy = 0$ является ...

 $A) x^4 + y^3 = C$

B) $4x^4 + 3y^3 = C$

Б)3 $4x^3 + 3y^2 = C$

 Γ) $x^4 = y^3$

26. Для однородного уравнения $y' = \frac{4x+y}{x}$ соответствующее уравнение с разделяющими переменными будет иметь вид ...

 $A) du - \frac{4dx}{x} = 0$

 $B) x \cdot du - 4dx = 0$

 $\mathrm{E}\frac{du}{u+4} - \frac{dx}{x} = 0$

 $\Gamma) dy - \frac{4dx}{x} = 0$

27. Для линейного дифференциального уравнения $y' - y \cdot cosx = sinx$ функцию v находят из уравнения ...

A) $v' - cosx \cdot v = 0$

B) $v' + sinx \cdot v = 0$

 $\mathbf{b}) v' + \cos x \cdot v = 0$

 $\Gamma) v' - sinx \cdot v = 0$

28. Общим решением дифференциального уравнения y'' + 3y' - 4 = 0 является ...

A) $y = C_1 e^x + C_2 e^{-4x}$

B) $v = e^x - 4e^{-4x}$

Б) $y = C_1 e^{-x} + C_2 e^{4x}$

 $\Gamma) y = e^{-x} - 4e^{4x}$

29. Общим решением дифференциального уравнения y'' = sinx является ...

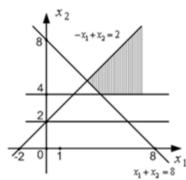
 $A) y = -\sin x + C_1 x + C_2$

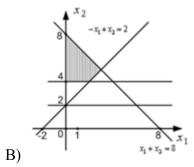
B) $y = -\sin x + C_1$

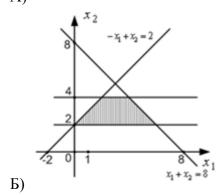
 $\mathbf{E}(\mathbf{y}) = \sin x + C_1 x + C_2$

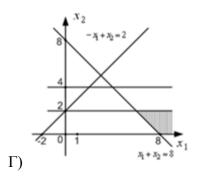
 Γ) $y = e^x + C_1 x^2 + C_2$

30. Частными решением дифференциального уравнения y'' + y = 0 являются ...

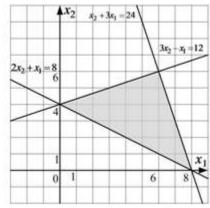

A) y = cosx


B) $v = e^{-x}$


$$\mathbf{b}$$
) $y = sinx$

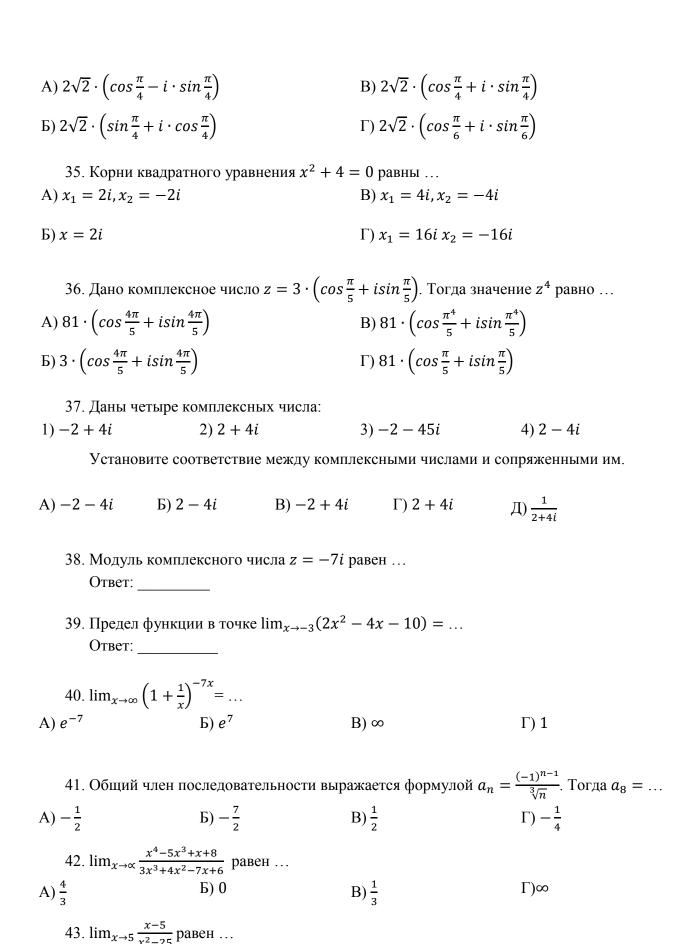

$$\Gamma$$
) $y = x^2$

31. Областью решения системы неравенств



32. Областью решения системы неравенств

многоугольник



Тогда максимальное значение функции $L=5x_1-x_2+8$, где x_1,x_2 принадлежат области решений, равно ...

Ответ: ____

- 33. Сумма комплексных чисел $z_1 = -2 + 5i$ и $z_2 = 3 7i$ равна ... 1 2i В) 1 + 2i Г) -1 + 2i
- A) 1 2i

- 34. Тригонометрическая форма комплексного числа z = 2 + 2i имеет вид ...

B) 0

 Γ) ∞

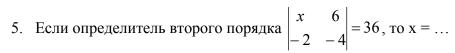
44. $\lim_{x\to 0} \frac{\sin 8x}{x}$ равен ...

A) $\frac{1}{10}$

	Ответ:				
4:	5. Функция $f(x) = x^3$	$-x^2-x+4$ задан	на на отрезке $[0; 2]$. $\int_0^2 f$	$f(x)dx = \cdots$	
A) $8\frac{1}{3}$			2	Γ) $8\frac{2}{3}$	
40	5. Функция $f(x) = x^3$ функции равно Ответ:	$-x^2 - x + 4$ задан	на на отрезке [0; 2]. Наи	большее значение данной	
4′			ядка $\begin{bmatrix} 1 & -2 & 3 \\ -4 & 5 & 0 \\ 2 & 1 & -1 \end{bmatrix}$.	Результат умножения	
A) $\begin{vmatrix} 1 \\ - \\ 0 \end{vmatrix}$	определителя на чис -2 3 5 4 5 0 5) -3 3 -3 5 6 3 -3 6 5		B) $\begin{vmatrix} 1 & -2 & 3 \\ -12 & 15 & 0 \\ 6 & 3 & -3 \end{vmatrix}$	$ \begin{array}{c cccc} \Gamma) & & & & \\ 1 & -2 & 9 & & \\ -4 & 5 & 0 & & \\ 6 & 2 & 2 & 3 \end{array} $	
48	3. Алгебраическое допо Ответ:	олнение элемента	a_{21} определителя (из за	дания 47) равно	
Вариант 2					
1.	Даны матрицы $A = \begin{pmatrix} 3 & -1 \\ 0 & -2 \end{pmatrix}$ и $B = \begin{pmatrix} 0 & 1 \\ -4 & 3 \end{pmatrix}$. Тогда матрица $A \cdot B$ равна				
			$B)\begin{pmatrix} -1 & -15 \\ -2 & -6 \end{pmatrix}$		
2.	Определитель 2 0 0 1 1 0	3 2 равен 2			
A) 1	Б) 7		B) 0	Γ) 3	
3.	Cucremy $\begin{cases} 2x - y = 5 \\ -3x + y = 0 \end{cases}$	–7 решают по пр	равилу Крамера. Устано	овите соответствие между	
1) Δx	названием величины 2) Δ		3) x	4) y	
,	, –.	•	•	. •	

4. Даны матрицы
$$A = \begin{pmatrix} -1 & 1 \\ 0 & -2 \end{pmatrix}$$
 и $B = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$, тогда $3 \cdot A - B = \dots$

B) 2

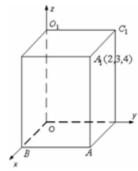

Д) 0

Γ) -1

A) -2

Б) 1

A)
$$\begin{pmatrix} -4 & 1 \\ 1 & -7 \end{pmatrix}$$
 B) $\begin{pmatrix} -2 & 5 \\ -1 & -5 \end{pmatrix}$ B) $\begin{pmatrix} -4 & 1 \\ -1 & -7 \end{pmatrix}$ Γ) $\begin{pmatrix} -2 & 1 \\ 1 & -5 \end{pmatrix}$


Ответ:

- 6. Система линейных уравнений $\begin{cases} x-z=0 \\ x+z=4 \end{cases}$ имеет решение ...
- A) x = 2; y = -2; z = 2

B) x = 2; y = 2; z = 2

Б) x = 2; y = -2; z = -2

- Γ) x = -2; y = -2; z = 2
- 7. Дан прямоугольный параллелепипед.

Одна из его вершин совпадает с началом координат. Ребра, исходящие из этой вершины, лежат на осях координат. Вершина \hat{A}_1 имеет координаты (2; 3; 4). Установите соответствие между вершинами данного параллелепипеда и их координатами.

1) A

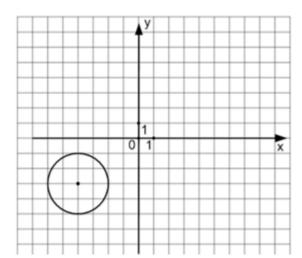
2) B

- 3) O_1
- 4) C_1

- A) (2; 3; 0)
- Б) (2; 0; 0)
- B) (0; 0; 4) Γ) (0; 3; 4)
- Д) (2; 0; 4)
- 8. Пусть векторы заданы своими координатами: $\bar{a}=\{2;\; -3; 1\}$ и $\bar{b}=\{3; 0; 2\}$. В этом случае их скалярное произведение $\bar{a} \cdot \bar{b}$ равно ...

Ответ: ____

9. Даны векторы $\bar{a}=\{3;\ 1;-2\}$ и $\bar{b}=\{-4;5;2\}$. Тогда сумма координат вектора $2\bar{a}+\bar{b}$ равна ...


Ответ: ____

- 10. Для точек A(1; 4) и B(-1; 3) общее уравнение прямой является ...
- A) x 2y + 7 = 0

B) x - y + 3 = 0

Б) x + 2v + 3 = 0

- Γ) 2x y + 7 = 0
- 11. В координатной плоскости XOY линия задана уравнением $y^2 = 2x + 1$. Тогда эта линия проходит через точки ...
- A) (4; -3)
- Б) (12; 5)
- B) (2; 5)
- Γ) (-1; 1)
- 12. Уравнением окружности, изображенной на чертеже,

является ...

A)
$$(x + 4)^2 + (y + 3)^2 = 4$$

B)
$$(x + 3)^2 - (y - 2)^2 = 16$$

Б)
$$(x-4)^2 + (y-3)^2 = 4$$

$$\Gamma) (x+3)^2 + (y-2)^2 = 4$$

13. Производная функции $y = x^3 \cdot sinx - 4 \cdot x$ равна ...

A)
$$3 \cdot x^2 \cdot sinx + x^3 \cdot cosx - 4$$

B)
$$3 \cdot x^2 \cdot cos x - 4$$

$$\mathbf{b}$$
) $3 \cdot x^2 \cdot \sin x + x^3 \cdot \cos x$

$$\Gamma$$
) $3 \cdot x^2 + cos x - 4$

14. Производная функции y = cos(2x - 3) равна ...

A)
$$-2 \cdot sin(2x - 3)$$

B)
$$sin(2x - 3)$$

Б)
$$2 \cdot sin(2x - 3)$$

$$\Gamma$$
) $-\sin(2x-3)$

15. Если f(x) = cos x + 4x, то $f'(\frac{3\pi}{2})$ принимает значение, равное ...

Ответ: _____

16. Точка минимума функции $y = 2x^3 - 21x^2 + 60x + 2$ имеет значение x_0 , равное ... Ответ:

17. Наименьшее значение функции $f(x) = -x^3 + 10x^2 - 17x + 10$ на отрезке [0; 3] равно

Ответ: _____

18. Значения x_0 и Δx выбираются так, чтобы можно было вычислить $y(x_0)$ и при этом Δx , взятое по модулю, было бы как можно меньше. Тогда приближенное значение выражения $\sqrt{80,7}$ равно ...

A)
$$8\frac{59}{60}$$

Б)
$$8\frac{1}{60}$$

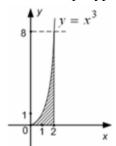
B)
$$9\frac{1}{60}$$

$$\Gamma$$
) 9 $\frac{1}{6}$

19. Неопределенный интеграл $\int 7\cos x dx$ равен ...

A)
$$7 \cdot sinx + C$$

B)
$$-7 \cdot cosx + C$$


$$(5)-7 \cdot sinx + C$$

$$\Gamma$$
) $sinx + C$

20. Определенный интеграл $\int_3^6 \frac{dx}{\sqrt{x-2}}$ равен ...

Ответ:

21. Площадь фигуры, изображенной на заданном рисунке, равна ...

A) 4

Б) 1024

B) 12

Γ) 2

22. Скорость движения тела задана уравнением $v(t) = 3t^2 - 2t$. Тогда путь, пройденный телом за 4 секунды от начала движения, равен ...

Ответ: _____

23. Неопределенный интеграл $\int sin 4x dx$ равен ...

$$A) - \frac{1}{4}\cos 4x + C$$

B)
$$-4\cos 4x + C$$

$$\mathrm{E})^{\frac{1}{4}}\cos 4x + C$$

$$\Gamma$$
) $4 \cdot cos4x + C$

24. Определенный интеграл $\int_1^2 (5-4x) dx$ равен ...

Ответ: _____

25. Решением дифференциального уравнения с разделяющими переменными $3x^2dx - 5y^4dy = 0$ является ...

$$A) x^3 - y^5 = C$$

B)
$$3x^3 - 5y^5 = C$$

$$E)3 x^2 - 5y^4 = C$$

$$\Gamma) x^3 = -y^5$$

26. Для однородного уравнения $y' = \frac{5x+y}{x}$ соответствующее уравнение с разделяющими переменными будет иметь вид ...

A)
$$du - \frac{5dx}{x} = 0$$

$$B) x \cdot du - 5dx = 0$$

$$\mathbf{b})\frac{du}{u+5} - \frac{dx}{x} = 0$$

$$\Gamma) dy - \frac{5dx}{x} = 0$$

27. Для линейного дифференциального уравнения $y' + y \cdot x^3 = 5x^2$ функцию v находят из уравнения ...

$$A) v' + x^3 \cdot v = 0$$

$$B) v' + 5x^2 \cdot v = 0$$

Б)
$$v' - x^3 \cdot v = 0$$

$$\Gamma) v' - 5x^2 \cdot v = 0$$

28. Общим решением дифференциального уравнения y'' - 4y' - 12 = 0 является ...

A)
$$y = C_1 e^{-2x} + C_2 e^{6x}$$

B)
$$y = 2e^{2x} - 3e^{-6x}$$

Б)
$$y = C_1 e^{2x} + C_2 e^{-6x}$$

$$\Gamma$$
) $y = 2e^{-2x} + 4e^{6x}$

29. Общим решением дифференциального уравнения $y'' = e^x$ является ...

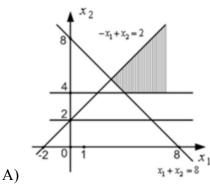
$$A) y = e^x + C_1 x + C_2$$

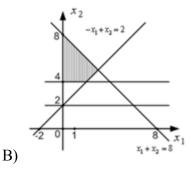
$$B) y = e^x + C_1$$

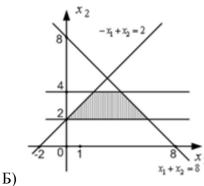
$$\mathbf{E}(x) = -e^{x} + C_{1}x + C_{2}$$

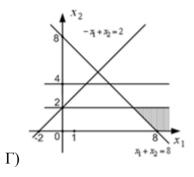
$$\Gamma) y = e^x + C_1 x^2 + C_2$$

30. Частными решением дифференциального уравнения y'' - 3y' - 4y = 0 является ...

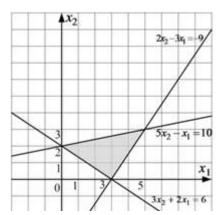

$$A) y = 2e^{-x}$$


B)
$$y = sinx$$


Б)
$$y = e^{4x}$$


$$\Gamma) y = x^2 - 3x - 4$$

31. Областью решения системы неравенств $\begin{cases} -x_1 + x_2 \leq 2 \\ x_1 + x_2 \geq 8 \end{cases}$ является ... $x_2 \geq 4$



32. Областью решения системы неравенств $\begin{cases} 5x_2-x_1 \leq 10 \\ 2x_2-3x_1 \geq -9 \end{cases}$ является заштрихованный $3x_2+2x_1 \geq 6$ многоугольник

Тогда максимальное значение функции $L = 2x_1 - 4x_2 + 10$, где x_1, x_2 принадлежат области решений, равно ...

Ответ:

33. Сумма комплексных чисел $z_1 = 3 - 2i$ и $z_2 = -8 - 4i$ равна ...

A)
$$-5 - 6i$$

$$(5) -5 + 6i$$

B)
$$-5 - 2i$$

$$\Gamma$$
) 5 + 6 i

34. Тригонометрическая форма комплексного числа z = 2 + 2i имеет вид ...

A)
$$2\sqrt{2} \cdot \left(\cos\frac{\pi}{4} + i \cdot \sin\frac{\pi}{4}\right)$$

B)
$$2\sqrt{2} \cdot \left(\cos\frac{\pi}{4} - i \cdot \sin\frac{\pi}{4}\right)$$

$$\text{B) } 2\sqrt{2} \cdot \left(\sin\frac{\pi}{4} + i \cdot \cos\frac{\pi}{4}\right)$$

$$\Gamma) \ 2\sqrt{2} \cdot \left(\cos\frac{\pi}{6} + i \cdot \sin\frac{\pi}{6}\right)$$

35. Корни квадратного уравнения $x^2 + 13x + 48 = 0$ равны ...

A)
$$x_1 = \frac{-13 - i \cdot \sqrt{23}}{2}$$
, $x_2 = \frac{-13 + i \cdot \sqrt{23}}{2}$

B)
$$x_1 = \frac{-13 - i \cdot 23}{2}$$
, $x_2 = \frac{-13 + i \cdot 23}{2}$

Б)
$$x_1 = \frac{-13 - i \cdot \sqrt{23}}{2}$$
, $x_2 = \frac{13 + i \cdot \sqrt{23}}{2}$

$$\Gamma$$
) $x_1 = \frac{-23 - i \cdot \sqrt{13}}{2}$, $x_2 = \frac{-23 + i \cdot \sqrt{13}}{2}$

36. Дано комплексное число $z=3\cdot\left(\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\right)$. Тогда значение z^4 равно ...

A)
$$81 \cdot \left(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5}\right)$$

B)
$$81 \cdot \left(\cos\frac{\pi^4}{5} + i\sin\frac{\pi^4}{5}\right)$$

$$\text{E}) \ 3 \cdot \left(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5}\right)$$

$$\Gamma) 81 \cdot \left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)$$

37. Даны четыре комплексных числа:

1)
$$3 + 5i$$

$$2) 3 - 5i$$

$$3) - 3 + 5i$$

$$4) -3 - 5i$$

Установите соответствие между комплексными числами и сопряженными им.

A)
$$3 - 5i$$

Б)
$$3 + 5i$$

B)
$$-3 - 5$$

$$(B)$$
 3 + 5 i (B) -3 - 5 i (C) -3 + 5 i

$$I$$
) $\frac{1}{2+5i}$

38. Модуль комплексного числа z = -7i равен ...

39. Предел функции в точке $\lim_{x\to -1} (4x^2 - 3x - 6) = \dots$

Ответ: _____

$$40. \lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n = \dots$$
 A) e^{-1} Б) e В) ∞ Г) 1 41. Общий член последовательности выражается формулой $a_n = \frac{n!}{n^2}$. Тогда $a_3 = \dots$

Γ) 1

Γ) 1

 Γ) $\frac{4}{2}$

43. $\lim_{x\to 9} \frac{x^2-81}{x-9}$ pases ... A) 18 B) 1 Γ) ∞

44. $\lim_{x\to 0} \frac{8x}{\sin 4x}$ pases ... Ответ: _____

45. Функция $f(x) = x^3 - x^2 - x + 4$ задана на отрезке [0; 2]. $\int_0^2 f(x) dx = \cdots$

A)
$$7\frac{1}{3}$$
 B) $7\frac{2}{3}$ Γ) $8\frac{2}{3}$

B) $\frac{1}{2}$

46. Функция $f(x) = x^3 - x^2 - x + 4$ задана на отрезке [0; 2]. Наибольшее значение данной функции равно ... Ответ: _____

47. Дан определитель третьего порядка $\begin{vmatrix} 3 & -9 & 4 \\ 1 & 3 & 6 \\ -2 & 3 & 1 \end{vmatrix}$. Результат умножения определителя на число $\frac{1}{3}$ равен ...

A)
$$\begin{vmatrix} 3 & -3 & 4 \\ 1 & 1 & 6 \\ -2 & 1 & 1 \end{vmatrix}$$
 B) $\begin{vmatrix} 1 & -3 & \frac{4}{3} \\ \frac{1}{3} & 1 & 2 \\ -\frac{2}{3} & 1 & \frac{1}{3} \end{vmatrix}$ B) $\begin{vmatrix} 1 & -3 & 4 \\ 1 & 1 & 2 \\ -2 & 1 & 1 \end{vmatrix}$ Γ) $\begin{vmatrix} 3 & -3 & 4 \\ \frac{1}{3} & 1 & 2 \\ -2 & 1 & 1 \end{vmatrix}$

48. Алгебраическое дополнение элемента a_{12} определителя равно (определитель задания 47)...

Ответ: _____

Ответы:

A) $\frac{2}{3}$

1 вај	1 вариант		2 вариант	
1	A	1	A	
2	В	2	A	
3	1А2Б3В	3	1А2Б3В4Г	
4	A	4	A	
5	7	5	-6	

6	A	6	A
7	1А2Б3Д4Г	7	1А2Д3Б4Г
8	8	8	8
9	7	9	7
10	A	10	A
11	ВГ	11	АБ
12	Б	12	A
13	A	13	A
14	В	14	A
15	5	15	5
16	3	16	5
17	11	17	2
18	A	18	A
19	A	19	Б
20	3	20	2
21	A	21	A
22	30	22	48
23	A	23	A
24	-20	24	A
25	A	25	A
26	A	26	A
27	A	27	A
28	A	28	A
29	A	29	A
30	АБ	30	АБ
31	A	31	A
32	32	32	8
33	A	33	A
34	В	34	A
35	A	35	A
36	A	36	A
37	1А2Б3В4Г	37	1А2Б3В4Г
38	7	38	7
39	20	39	1
40	A	40	A
41	A	41	A
42	Γ	42	A

43	A	43	A
44	8	44	2
45	Б	45	A
46	6	46	6
47	Б	47	Б
48	1	48	-13

Лист регистрации изменений

№ п.п.	Содержание изменения	Дата, номер протокола заседания ПЦК. Подпись председателя ПЦК
		• • • • • • • • • • • • • • • • • • • •