АННОТАЦИЯ ДИСЦИПЛИНЫ «Теория разностных уравнений»

Дисциплина «Теория разностных уравнений» является частью программы бакалавриата «Вычислительные машины, комплексы, системы и сети» по направлению «09.03.01. Информатика и вычислительная техника».

Цели и задачи дисциплины

Цель учебной дисциплины расширение и углубление знаний о численных методах и способах их применения для решения теоретических и практических задач с помощью ЭВМ; изучение разностных методов решения интегрируемых типов дифференциальных уравнений.

Задачи учебной дисциплины:

- изучение численных методов и фундаментальных методов современной количественной и качественной теории дифференциальных и разностных уравнений как средства математического моделирования детерминированных явлений;
- формирование умений построения алгоритмов и решения задач применением численных методов и средств вычислительной техники.

Изучаемые объекты дисциплины

- численные методы решения нелинейных уравнений и систем линейных уравнений;
- методы приближения и аппроксимации функций, методы обработки экспериментальных данных;
 - методы численного интегрирования и дифференцирования;
 - численные методы решения обыкновенных дифференциальных уравнений.

Объем и виды учебной работы очная форма обучения

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 4	
1. Проведение учебных занятий (включая проведение текущего контроля успеваемости) в форме: 1.1. Контактная аудиторная работа, из них:	36	36	
- лекции (Л)	16	16	
- лабораторные работы (ЛР)			
- практические занятия, семинары и (или) другие виды занятий семинарского типа (ПЗ)	18	18	
- контроль самостоятельной работы (КСР)	2	2	
- контрольная работа			
1.2. Самостоятельная работа студентов (СРС)	36	36	
2. Промежуточная аттестация			
Экзамен			
Дифференцированный зачет			
Зачет	+	+	
Курсовой проект (КП)			
Курсовая работа (КР)			
Общая трудоемкость дисциплины	72	72	

Содержание дисциплины очная форма обучения

Наименование разделов дисциплины с кратким содержанием	Объем аудиторных занятий по видам в часах		Объем внеау- диторных за- нятий по видам в часах	
	Л	ЛР	П3	CPC
Мод1. Раздел 1. Погрешности вычислений. Методы решения нелинейных уравнений.				
Тема 1.Теория погрешностей. Погрешность вычисления функций. Общая формула погрешности функции одной переменной. Погрешность арифметических выражений. Погрешность функции нескольких переменных. Обратная задача теории погрешностей	2		2	3
Тема 2. Методы решения нелинейных уравнений. Схема решения нелинейного уравнения. Изолирование корня. Уточнение корней: метод простой итерации, метод касательных, метод хорд. Алгоритмизация методов, условия применения, скорость сходимости, геометрическая иллюстрация	2		2	4
Раздел 2. Численные методы линейной алгебры. Тема 3. Решение систем линейных алгебраических уравнений. Итерационные методы решения систем линейных алгебраических уравнений. Приведение системы к виду, удобному для итераций. Критерий окончания итераций. Метод простой итерации, условия его сходимости. Метод Зейделя.	2		2	4
Итого по модулю	6		6	11
Мод 2.Раздел 3. Приближение функций.				
Тема 4. Методы приближения и аппроксимации функций. Классификация задач аппроксимации. Критерий близости. Задача интерполирования. Полиномиальная интерполяция. Интерполяционные многочлены Лагранжа и Ньютона. Разделённые разности. Остаточный член и погрешность полиномиальной интерполяции. Выбор узлов интерполяции.	2		2	5
Тема 5. Методы обработки экспериментальных данных. Выбор узловых точек, класса функций. Метод наименьших квадратов. Выбор вида аппроксимирующей функции. Линейная функция, квадратный трёхчлен, степенная функция	1		2	4
Раздел 4. Численное интегрирование и решение дифференциальныхуравнений. Тема 6. Численное интегрирование. Формулы прямоугольников, трапеции, Симпсона. Погрешность	2		2	4

Наименование разделов дисциплины с кратким содержанием	Объем аудиторных занятий по видам в часах		Объем внеау- диторных за- нятий по видам в часах	
методов. Интегрирование функций с заданной сте-				
пенью точности. Приложения определённого интеграла: вычисление скорости, ускорения, работы,				
площади и координаты центра масс плоских фигур				
Тема 7. Приближённое вычислениепроизводных.	1		2	4
Разностные схемы.				
Конечно-разностные формулы. Метод конечных				
разностей (МКР). Вывод формул численного диф-				
ференцирования: разностные схемы для вычисления				
производных первого и второго порядка. Вывод формул производных первого и второго порядков на				
основе интерполяционных формул Ньютона				
Тема 8. Методы решения обыкновенных дифферен-	2		6	6
циальных уравнений.				
Классификация дифференциальных уравнений. За-				
дача Коши и методы её решения. Приближенное				
решение обыкновенных дифференциальных уравне-				
ний. Методы Эйлера, Эйлера- Коши, Рунге-Кутты 4-				
го порядка. Порядок точности методов.				
Геометрическая иллюстрация и погрешность мето-				
дов				
Тема 9. Системы линейных дифференциальных	2		2	2
уравнений.				
Дифференциальные уравнения в частных производ-				
ных.				
Задача Коши для системы дифференциальных урав-				
нений и формулы Рунге-Кутты. Решение дифференциальных уравнений п-го порядка. Представление				
дифференциального уравнения второго порядка в				
виде системы дифференциальных уравнений перво-				
го порядка. Многошаговые методы решения диффе-				
ренциальных уравнений.				
Решение дифференциальных уравнений в частных				
производных методом конечных разностей. Решение				
дифференциальных уравнений в частных производ-				
ных при граничных условиях произвольной формы Итого по модулю	10		12	25
Итого но мобулю	16		18	36

Тематика примерных практических занятий

No	Наименование темы практического занятия		
п.п.			
1.	Определение абсолютной и относительной погрешностей приближённого числа. Верные		
	цифры числа		
2.	Решение нелинейных уравнений итерационными методами		
3.	Решение системлинейных уравнений итерационными методами		

4.	Интерполирование полиномом Лагранжа и интерполяционными формулами Ньютона	
5.	Применение метода наименьших квадратов для обработки экспериментальных данных	
6.	Вычисление определённых интегралов по формулам трапеций и Симпсона	
7.	Построение разностных схем для вычисления производных первого и второго порядка	
8.	Приближённое решение обыкновенных дифференциальных уравнений методами Эйлера,	
	Эйлера-Коши и Рунге-Кутты	